Optimization and Control of Dynamic Systems

Optimization and Control of Dynamic Systems

Author: Henryk Górecki

Publisher: Springer

Published: 2017-07-26

Total Pages: 679

ISBN-13: 3319626469

DOWNLOAD EBOOK

This book offers a comprehensive presentation of optimization and polyoptimization methods. The examples included are taken from various domains: mechanics, electrical engineering, economy, informatics, and automatic control, making the book especially attractive. With the motto “from general abstraction to practical examples,” it presents the theory and applications of optimization step by step, from the function of one variable and functions of many variables with constraints, to infinite dimensional problems (calculus of variations), a continuation of which are optimization methods of dynamical systems, that is, dynamic programming and the maximum principle, and finishing with polyoptimization methods. It includes numerous practical examples, e.g., optimization of hierarchical systems, optimization of time-delay systems, rocket stabilization modeled by balancing a stick on a finger, a simplified version of the journey to the moon, optimization of hybrid systems and of the electrical long transmission line, analytical determination of extremal errors in dynamical systems of the rth order, multicriteria optimization with safety margins (the skeleton method), and ending with a dynamic model of bicycle. The book is aimed at readers who wish to study modern optimization methods, from problem formulation and proofs to practical applications illustrated by inspiring concrete examples.


Advances in Energy System Optimization

Advances in Energy System Optimization

Author: Valentin Bertsch

Publisher: Springer

Published: 2017-03-16

Total Pages: 239

ISBN-13: 3319517953

DOWNLOAD EBOOK

The papers presented in this volume address diverse challenges in energy systems, ranging from operational to investment planning problems, from market economics to technical and environmental considerations, from distribution grids to transmission grids and from theoretical considerations to data provision concerns and applied case studies. The International Symposium on Energy System Optimization (ISESO) was held on November 9th and 10th 2015 at the Heidelberg Institute for Theoretical Studies (HITS) and was organized by HITS, Heidelberg University and Karlsruhe Institute of Technology.


Advanced and Optimization Based Sliding Mode Control: Theory and Applications

Advanced and Optimization Based Sliding Mode Control: Theory and Applications

Author: Antonella Ferrara

Publisher: SIAM

Published: 2019-07-01

Total Pages: 302

ISBN-13: 1611975840

DOWNLOAD EBOOK

A compendium of the authors’ recently published results, this book discusses sliding mode control of uncertain nonlinear systems, with a particular emphasis on advanced and optimization based algorithms. The authors survey classical sliding mode control theory and introduce four new methods of advanced sliding mode control. They analyze classical theory and advanced algorithms, with numerical results complementing the theoretical treatment. Case studies examine applications of the algorithms to complex robotics and power grid problems. Advanced and Optimization Based Sliding Mode Control: Theory and Applications is the first book to systematize the theory of optimization based higher order sliding mode control and illustrate advanced algorithms and their applications to real problems. It presents systematic treatment of event-triggered and model based event-triggered sliding mode control schemes, including schemes in combination with model predictive control, and presents adaptive algorithms as well as algorithms capable of dealing with state and input constraints. Additionally, the book includes simulations and experimental results obtained by applying the presented control strategies to real complex systems. This book is suitable for students and researchers interested in control theory. It will also be attractive to practitioners interested in implementing the illustrated strategies. It is accessible to anyone with a basic knowledge of control engineering, process physics, and applied mathematics.


Renewable Energy Systems

Renewable Energy Systems

Author: Ahmad Taher Azar

Publisher: Academic Press

Published: 2021-09-09

Total Pages: 734

ISBN-13: 0128203986

DOWNLOAD EBOOK

Renewable Energy Systems: Modelling, Optimization and Control aims to cross-pollinate recent advances in the study of renewable energy control systems by bringing together diverse scientific breakthroughs on the modeling, control and optimization of renewable energy systems by leading researchers. The book brings together the most comprehensive collection of modeling, control theorems and optimization techniques to help solve many scientific issues for researchers in renewable energy and control engineering. Many multidisciplinary applications are discussed, including new fundamentals, modeling, analysis, design, realization and experimental results. The book also covers new circuits and systems to help researchers solve many nonlinear problems. This book fills the gaps between different interdisciplinary applications, ranging from mathematical concepts, modeling, and analysis, up to the realization and experimental work. - Covers modeling, control theorems and optimization techniques which will solve many scientific issues for researchers in renewable energy - Discusses many multidisciplinary applications with new fundamentals, modeling, analysis, design, realization and experimental results - Includes new circuits and systems, helping researchers solve many nonlinear problems


Advanced Optimization for Motion Control Systems

Advanced Optimization for Motion Control Systems

Author: Jun Ma

Publisher: CRC Press

Published: 2020-01-24

Total Pages: 183

ISBN-13: 1000037118

DOWNLOAD EBOOK

Precision motion control is strongly required in many fields, such as precision engineering, micromanufacturing, biotechnology, and nanotechnology. Although great achievements have been made in control engineering, it is still challenging to fulfill the desired performance for precision motion control systems. Substantial works have been presented to reveal an increasing trend to apply optimization approaches in precision engineering to obtain the control system parameters. In this book, we present a result of several years of work in the area of advanced optimization for motion control systems. The book is organized into two parts: Part I focuses on the model-based approaches, and Part II presents the data-based approaches. To illustrate the practical appeal of the proposed optimization techniques, theoretical results are verified with practical examples in each chapter. Industrial problems explored in the book are formulated systematically with necessary analysis of the control system synthesis. By virtue of the design and implementation nature, this book can be used as a reference for engineers, researchers, and students who want to utilize control theories to solve the practical control problems. As the methodologies have extensive applicability in many control engineering problems, the research results in the field of optimization can be applied to full-fledged industrial processes, filling in the gap between research and application to achieve a technology frontier increment.


Optimization and Control of Bilinear Systems

Optimization and Control of Bilinear Systems

Author: Panos M. Pardalos

Publisher: Springer Science & Business Media

Published: 2010-03-14

Total Pages: 388

ISBN-13: 0387736697

DOWNLOAD EBOOK

Covers developments in bilinear systems theory Focuses on the control of open physical processes functioning in a non-equilibrium mode Emphasis is on three primary disciplines: modern differential geometry, control of dynamical systems, and optimization theory Includes applications to the fields of quantum and molecular computing, control of physical processes, biophysics, superconducting magnetism, and physical information science


Advances and Trends in Optimization with Engineering Applications

Advances and Trends in Optimization with Engineering Applications

Author: Tamas Terlaky

Publisher: SIAM

Published: 2017-04-26

Total Pages: 730

ISBN-13: 1611974674

DOWNLOAD EBOOK

Optimization is of critical importance in engineering. Engineers constantly strive for the best possible solutions, the most economical use of limited resources, and the greatest efficiency. As system complexity increases, these goals mandate the use of state-of-the-art optimization techniques. In recent years, the theory and methodology of optimization have seen revolutionary improvements. Moreover, the exponential growth in computational power, along with the availability of multicore computing with virtually unlimited memory and storage capacity, has fundamentally changed what engineers can do to optimize their designs. This is a two-way process: engineers benefit from developments in optimization methodology, and challenging new classes of optimization problems arise from novel engineering applications. Advances and Trends in Optimization with Engineering Applications reviews 10 major areas of optimization and related engineering applications, providing a broad summary of state-of-the-art optimization techniques most important to engineering practice. Each part provides a clear overview of a specific area and discusses a range of real-world problems. The book provides a solid foundation for engineers and mathematical optimizers alike who want to understand the importance of optimization methods to engineering and the capabilities of these methods.


Mathematical Methods in Systems, Optimization, and Control

Mathematical Methods in Systems, Optimization, and Control

Author: Harry Dym

Publisher: Springer Science & Business Media

Published: 2012-07-25

Total Pages: 364

ISBN-13: 3034804113

DOWNLOAD EBOOK

This volume is dedicated to Bill Helton on the occasion of his sixty fifth birthday. It contains biographical material, a list of Bill's publications, a detailed survey of Bill's contributions to operator theory, optimization and control and 19 technical articles. Most of the technical articles are expository and should serve as useful introductions to many of the areas which Bill's highly original contributions have helped to shape over the last forty odd years. These include interpolation, Szegö limit theorems, Nehari problems, trace formulas, systems and control theory, convexity, matrix completion problems, linear matrix inequalities and optimization. The book should be useful to graduate students in mathematics and engineering, as well as to faculty and individuals seeking entry level introductions and references to the indicated topics. It can also serve as a supplementary text to numerous courses in pure and applied mathematics and engineering, as well as a source book for seminars.


Optimization and Control with Applications

Optimization and Control with Applications

Author: Liqun Qi

Publisher: Springer Science & Business Media

Published: 2006-03-30

Total Pages: 587

ISBN-13: 0387242554

DOWNLOAD EBOOK

A collection of 28 refereed papers grouped according to four broad topics: duality and optimality conditions, optimization algorithms, optimal control, and variational inequality and equilibrium problems. Suitable for researchers, practitioners and postgrads.


Extremum-Seeking Control and Applications

Extremum-Seeking Control and Applications

Author: Chunlei Zhang

Publisher: Springer Science & Business Media

Published: 2011-10-26

Total Pages: 210

ISBN-13: 1447122240

DOWNLOAD EBOOK

Extremum-seeking control tracks a varying maximum or minimum in a performance function such as output or cost. It attempts to determine the optimal performance of a control system as it operates, thereby reducing downtime and the need for system analysis. Extremum-seeking Control and Applications is divided into two parts. In the first, the authors review existing analog-optimization-based extremum-seeking control including gradient-, perturbation- and sliding-mode-based control designs. They then propose a novel numerical-optimization-based extremum-seeking control based on optimization algorithms and state regulation. This control design is developed for simple linear time-invariant systems and then extended for a class of feedback linearizable nonlinear systems. The two main optimization algorithms – line search and trust region methods – are analyzed for robustness. Finite-time and asymptotic state regulators are put forward for linear and nonlinear systems respectively. Further design flexibility is achieved using the robustness results of the optimization algorithms and the asymptotic state regulator by which existing nonlinear adaptive control techniques can be introduced for robust design. The approach used is easier to implement and tends to be more robust than those that use perturbation-based extremum-seeking control. The second part of the book deals with a variety of applications of extremum-seeking control: a comparative study of extremum-seeking control schemes in antilock braking system design; source seeking, formation control, collision and obstacle avoidance for groups of autonomous agents; mobile radar networks; and impedance matching. MATLAB®/Simulink® code which can be downloaded from www.springer.com/ISBN helps readers to reproduce the results presented in the text and gives them a head start for implementing the algorithms in their own applications. Extremum-seeking Control and Applications will interest academics and graduate students working in control, and industrial practitioners from a variety of backgrounds: systems, automotive, aerospace, communications, semiconductor and chemical engineering.