This book offers recent advances in the theory of implied volatility and refined semiparametric estimation strategies and dimension reduction methods for functional surfaces. The first part is devoted to smile-consistent pricing approaches. The second part covers estimation techniques that are natural candidates to meet the challenges in implied volatility surfaces. Empirical investigations, simulations, and pictures illustrate the concepts.
This volume explores dynamic factor model specification, asymptotic and finite-sample behavior of parameter estimators, identification, frequentist and Bayesian estimation of the corresponding state space models, and applications.
Any financial asset that is openly traded has a market price. Except for extreme market conditions, market price may be more or less than a “fair” value. Fair value is likely to be some complicated function of the current intrinsic value of tangible or intangible assets underlying the claim and our assessment of the characteristics of the underlying assets with respect to the expected rate of growth, future dividends, volatility, and other relevant market factors. Some of these factors that affect the price can be measured at the time of a transaction with reasonably high accuracy. Most factors, however, relate to expectations about the future and to subjective issues, such as current management, corporate policies and market environment, that could affect the future financial performance of the underlying assets. Models are thus needed to describe the stochastic factors and environment, and their implementations inevitably require computational finance tools.
Recent years have witnessed a growing importance of quantitative methods in both financial research and industry. This development requires the use of advanced techniques on a theoretical and applied level, especially when it comes to the quantification of risk and the valuation of modern financial products. Applied Quantitative Finance (2nd edition) provides a comprehensive and state-of-the-art treatment of cutting-edge topics and methods. It provides solutions to and presents theoretical developments in many practical problems such as risk management, pricing of credit derivatives, quantification of volatility and copula modelling. The synthesis of theory and practice supported by computational tools is reflected in the selection of topics as well as in a finely tuned balance of scientific contributions on practical implementation and theoretical concepts. This linkage between theory and practice offers theoreticians insights into considerations of applicability and, vice versa, provides practitioners comfortable access to new techniques in quantitative finance. Themes that are dominant in current research and which are presented in this book include among others the valuation of Collaterized Debt Obligations (CDOs), the high-frequency analysis of market liquidity, the pricing of Bermuda options and realized volatility. All Quantlets for the calculation of the given examples are downloadable from the Springer web pages.
This volume, edited by Jeffrey Racine, Liangjun Su, and Aman Ullah, contains the latest research on nonparametric and semiparametric econometrics and statistics. Chapters by leading international econometricians and statisticians highlight the interface between econometrics and statistical methods for nonparametric and semiparametric procedures.
Understanding the dynamic evolution of the yield curve is critical to many financial tasks, including pricing financial assets and their derivatives, managing financial risk, allocating portfolios, structuring fiscal debt, conducting monetary policy, and valuing capital goods. Unfortunately, most yield curve models tend to be theoretically rigorous but empirically disappointing, or empirically successful but theoretically lacking. In this book, Francis Diebold and Glenn Rudebusch propose two extensions of the classic yield curve model of Nelson and Siegel that are both theoretically rigorous and empirically successful. The first extension is the dynamic Nelson-Siegel model (DNS), while the second takes this dynamic version and makes it arbitrage-free (AFNS). Diebold and Rudebusch show how these two models are just slightly different implementations of a single unified approach to dynamic yield curve modeling and forecasting. They emphasize both descriptive and efficient-markets aspects, they pay special attention to the links between the yield curve and macroeconomic fundamentals, and they show why DNS and AFNS are likely to remain of lasting appeal even as alternative arbitrage-free models are developed. Based on the Econometric and Tinbergen Institutes Lectures, Yield Curve Modeling and Forecasting contains essential tools with enhanced utility for academics, central banks, governments, and industry.
An increasing number of statistical problems and methods involve infinite-dimensional aspects. This is due to the progress of technologies which allow us to store more and more information while modern instruments are able to collect data much more effectively due to their increasingly sophisticated design. This evolution directly concerns statisticians, who have to propose new methodologies while taking into account such high-dimensional data (e.g. continuous processes, functional data, etc.). The numerous applications (micro-arrays, paleo- ecological data, radar waveforms, spectrometric curves, speech recognition, continuous time series, 3-D images, etc.) in various fields (biology, econometrics, environmetrics, the food industry, medical sciences, paper industry, etc.) make researching this statistical topic very worthwhile. This book gathers important contributions on the functional and operatorial statistics fields.
This volume provides practical solutions and introduces recent theoretical developments in risk management, pricing of credit derivatives, quantification of volatility and copula modeling. This third edition is devoted to modern risk analysis based on quantitative methods and textual analytics to meet the current challenges in banking and finance. It includes 14 new contributions and presents a comprehensive, state-of-the-art treatment of cutting-edge methods and topics, such as collateralized debt obligations, the high-frequency analysis of market liquidity, and realized volatility. The book is divided into three parts: Part 1 revisits important market risk issues, while Part 2 introduces novel concepts in credit risk and its management along with updated quantitative methods. The third part discusses the dynamics of risk management and includes risk analysis of energy markets and for cryptocurrencies. Digital assets, such as blockchain-based currencies, have become popular b ut are theoretically challenging when based on conventional methods. Among others, it introduces a modern text-mining method called dynamic topic modeling in detail and applies it to the message board of Bitcoins. The unique synthesis of theory and practice supported by computational tools is reflected not only in the selection of topics, but also in the fine balance of scientific contributions on practical implementation and theoretical concepts. This link between theory and practice offers theoreticians insights into considerations of applicability and, vice versa, provides practitioners convenient access to new techniques in quantitative finance. Hence the book will appeal both to researchers, including master and PhD students, and practitioners, such as financial engineers. The results presented in the book are fully reproducible and all quantlets needed for calculations are provided on an accompanying website. The Quantlet platform quantlet.de, quantlet.com, quantlet.org is an integrated QuantNet environment consisting of different types of statistics-related documents and program codes. Its goal is to promote reproducibility and offer a platform for sharing validated knowledge native to the social web. QuantNet and the corresponding Data-Driven Documents-based visualization allows readers to reproduce the tables, pictures and calculations inside this Springer book.
The recent global financial crisis has forced a re-examination of risk transmission in the financial sector and how it affects financial stability. Current macroprudential policy and surveillance (MPS) efforts are aimed establishing a regulatory framework that helps mitigate the risk from systemic linkages with a view towards enhancing the resilience of the financial sector. This paper presents a forward-looking framework ("Systemic CCA") to measure systemic solvency risk based on market-implied expected losses of financial institutions with practical applications for the financial sector risk management and the system-wide capital assessment in top-down stress testing. The suggested approach uses advanced contingent claims analysis (CCA) to generate aggregate estimates of the joint default risk of multiple institutions as a conditional tail expectation using multivariate extreme value theory (EVT). In addition, the framework also helps quantify the individual contributions to systemic risk and contingent liabilities of the financial sector during times of stress.