Mathematics of the Bond Market

Mathematics of the Bond Market

Author: Michał Barski

Publisher: Cambridge University Press

Published: 2020-04-23

Total Pages: 401

ISBN-13: 1108882846

DOWNLOAD EBOOK

Mathematical models of bond markets are of interest to researchers working in applied mathematics, especially in mathematical finance. This book concerns bond market models in which random elements are represented by Lévy processes. These are more flexible than classical models and are well suited to describing prices quoted in a discontinuous fashion. The book's key aims are to characterize bond markets that are free of arbitrage and to analyze their completeness. Nonlinear stochastic partial differential equations (SPDEs) are an important tool in the analysis. The authors begin with a relatively elementary analysis in discrete time, suitable for readers who are not familiar with finance or continuous time stochastic analysis. The book should be of interest to mathematicians, in particular to probabilists, who wish to learn the theory of the bond market and to be exposed to attractive open mathematical problems.


VaR Methodology for Non-Gaussian Finance

VaR Methodology for Non-Gaussian Finance

Author: Marine Habart-Corlosquet

Publisher: John Wiley & Sons

Published: 2013-05-06

Total Pages: 176

ISBN-13: 1118733983

DOWNLOAD EBOOK

With the impact of the recent financial crises, more attention must be given to new models in finance rejecting “Black-Scholes-Samuelson” assumptions leading to what is called non-Gaussian finance. With the growing importance of Solvency II, Basel II and III regulatory rules for insurance companies and banks, value at risk (VaR) – one of the most popular risk indicator techniques plays a fundamental role in defining appropriate levels of equities. The aim of this book is to show how new VaR techniques can be built more appropriately for a crisis situation. VaR methodology for non-Gaussian finance looks at the importance of VaR in standard international rules for banks and insurance companies; gives the first non-Gaussian extensions of VaR and applies several basic statistical theories to extend classical results of VaR techniques such as the NP approximation, the Cornish-Fisher approximation, extreme and a Pareto distribution. Several non-Gaussian models using Copula methodology, Lévy processes along with particular attention to models with jumps such as the Merton model are presented; as are the consideration of time homogeneous and non-homogeneous Markov and semi-Markov processes and for each of these models. Contents 1. Use of Value-at-Risk (VaR) Techniques for Solvency II, Basel II and III. 2. Classical Value-at-Risk (VaR) Methods. 3. VaR Extensions from Gaussian Finance to Non-Gaussian Finance. 4. New VaR Methods of Non-Gaussian Finance. 5. Non-Gaussian Finance: Semi-Markov Models.


Financial Modelling with Jump Processes

Financial Modelling with Jump Processes

Author: Peter Tankov

Publisher: CRC Press

Published: 2003-12-30

Total Pages: 552

ISBN-13: 1135437947

DOWNLOAD EBOOK

WINNER of a Riskbook.com Best of 2004 Book Award! During the last decade, financial models based on jump processes have acquired increasing popularity in risk management and option pricing. Much has been published on the subject, but the technical nature of most papers makes them difficult for nonspecialists to understand, and the mathematic


Term-Structure Models

Term-Structure Models

Author: Damir Filipovic

Publisher: Springer Science & Business Media

Published: 2009-07-28

Total Pages: 259

ISBN-13: 3540680152

DOWNLOAD EBOOK

Changing interest rates constitute one of the major risk sources for banks, insurance companies, and other financial institutions. Modeling the term-structure movements of interest rates is a challenging task. This volume gives an introduction to the mathematics of term-structure models in continuous time. It includes practical aspects for fixed-income markets such as day-count conventions, duration of coupon-paying bonds and yield curve construction; arbitrage theory; short-rate models; the Heath-Jarrow-Morton methodology; consistent term-structure parametrizations; affine diffusion processes and option pricing with Fourier transform; LIBOR market models; and credit risk. The focus is on a mathematically straightforward but rigorous development of the theory. Students, researchers and practitioners will find this volume very useful. Each chapter ends with a set of exercises, that provides source for homework and exam questions. Readers are expected to be familiar with elementary Itô calculus, basic probability theory, and real and complex analysis.


Mathematical Finance

Mathematical Finance

Author: Ernst Eberlein

Publisher: Springer Nature

Published: 2019-12-03

Total Pages: 774

ISBN-13: 3030261069

DOWNLOAD EBOOK

Taking continuous-time stochastic processes allowing for jumps as its starting and focal point, this book provides an accessible introduction to the stochastic calculus and control of semimartingales and explains the basic concepts of Mathematical Finance such as arbitrage theory, hedging, valuation principles, portfolio choice, and term structure modelling. It bridges thegap between introductory texts and the advanced literature in the field. Most textbooks on the subject are limited to diffusion-type models which cannot easily account for sudden price movements. Such abrupt changes, however, can often be observed in real markets. At the same time, purely discontinuous processes lead to a much wider variety of flexible and tractable models. This explains why processes with jumps have become an established tool in the statistics and mathematics of finance. Graduate students, researchers as well as practitioners will benefit from this monograph.


Credit Risk: Modeling, Valuation and Hedging

Credit Risk: Modeling, Valuation and Hedging

Author: Tomasz R. Bielecki

Publisher: Springer Science & Business Media

Published: 2004-01-22

Total Pages: 524

ISBN-13: 9783540675938

DOWNLOAD EBOOK

The motivation for the mathematical modeling studied in this text on developments in credit risk research is the bridging of the gap between mathematical theory of credit risk and the financial practice. Mathematical developments are covered thoroughly and give the structural and reduced-form approaches to credit risk modeling. Included is a detailed study of various arbitrage-free models of default term structures with several rating grades.


Interest Rate Models - Theory and Practice

Interest Rate Models - Theory and Practice

Author: Damiano Brigo

Publisher: Springer Science & Business Media

Published: 2007-09-26

Total Pages: 1016

ISBN-13: 354034604X

DOWNLOAD EBOOK

The 2nd edition of this successful book has several new features. The calibration discussion of the basic LIBOR market model has been enriched considerably, with an analysis of the impact of the swaptions interpolation technique and of the exogenous instantaneous correlation on the calibration outputs. A discussion of historical estimation of the instantaneous correlation matrix and of rank reduction has been added, and a LIBOR-model consistent swaption-volatility interpolation technique has been introduced. The old sections devoted to the smile issue in the LIBOR market model have been enlarged into a new chapter. New sections on local-volatility dynamics, and on stochastic volatility models have been added, with a thorough treatment of the recently developed uncertain-volatility approach. Examples of calibrations to real market data are now considered. The fast-growing interest for hybrid products has led to a new chapter. A special focus here is devoted to the pricing of inflation-linked derivatives. The three final new chapters of this second edition are devoted to credit. Since Credit Derivatives are increasingly fundamental, and since in the reduced-form modeling framework much of the technique involved is analogous to interest-rate modeling, Credit Derivatives -- mostly Credit Default Swaps (CDS), CDS Options and Constant Maturity CDS - are discussed, building on the basic short rate-models and market models introduced earlier for the default-free market. Counterparty risk in interest rate payoff valuation is also considered, motivated by the recent Basel II framework developments.