This book contributes to both mathematical problem solving and the communication of mathematics by students, and the role of personal and home technologies in learning beyond school. It does this by reporting on major results and implications of the Problem@Web project that investigated youngsters’ mathematical problem solving and, in particular, their use of digital technologies in tackling, and communicating the results of their problem solving, in environments beyond school. The book has two focuses: Mathematical problem solving skills and strategies, forms of representing and expressing mathematical thinking, technological-based solutions; and students ́ and teachers ́ perspectives on mathematics learning, especially school compared to beyond-school mathematics.
This book contributes to the field of mathematical problem solving by exploring current themes, trends and research perspectives. It does so by addressing five broad and related dimensions: problem solving heuristics, problem solving and technology, inquiry and problem posing in mathematics education, assessment of and through problem solving, and the problem solving environment. Mathematical problem solving has long been recognized as an important aspect of mathematics, teaching mathematics, and learning mathematics. It has influenced mathematics curricula around the world, with calls for the teaching of problem solving as well as the teaching of mathematics through problem solving. And as such, it has been of interest to mathematics education researchers for as long as the field has existed. Research in this area has generally aimed at understanding and relating the processes involved in solving problems to students’ development of mathematical knowledge and problem solving skills. The accumulated knowledge and field developments have included conceptual frameworks for characterizing learners’ success in problem solving activities, cognitive, metacognitive, social and affective analysis, curriculum proposals, and ways to promote problem solving approaches.
The innovative volume seeks to broaden the scope of research on mathematical problem solving in different educational environments. It brings together contributions not only from leading researchers, but also highlights collaborations with younger researchers to broadly explore mathematical problem-solving across many fields: mathematics education, psychology of education, technology education, mathematics popularization, and more. The volume’s three major themes—technology, creativity, and affect—represent key issues that are crucially embedded in the activity of problem solving in mathematics teaching and learning, both within the school setting and beyond the school. Through the book’s new pedagogical perspectives on these themes, it advances the field of research towards a more comprehensive approach on mathematical problem solving. Broadening the Scope of Research on Mathematical Problem Solving will prove to be a valuable resource for researchers and teachers interested in mathematical problem solving, as well as researchers and teachers interested in technology, creativity, and affect.
Engaging Young Children in Mathematics: Standards for Early Childhood Mathematics Education brings together the combined wisdom of a diverse group of experts involved with early childhood mathematics. The book originates from the landmark 2000 Conference on Standards for Pre-kindergarten and Kindergarten Mathematics Education, attended by representatives from almost every state developing standards for young children's mathematics; federal government officials; mathematicians; mathematics educators; researchers from mathematics education, early childhood education, and psychology; curriculum developers; teachers; policymakers; and professionals from organizations such as the National Conference of Teachers of Mathematics and the National Association for the Education of Young Children. The main goal of the Conference was to work collectively to help those responsible for framing and implementing early childhood mathematics standards. Although it has its roots in the Conference, the expanded scope of the standards and recommendations covered in this book includes the full range of kindergarten to grade 2. The volume is organized into two main parts and an online appendix (http://www.gse.buffalo.edu/org/conference/). Part One, Major Themes and Recommendations, offers a framework for thinking about pre-kindergarten - grade 2 mathematics education and specific recommendations. Part Two, Elaboration of Major Themes and Recommendations, provides substantive detail regarding young students' understandings of mathematical ideas. Each Part includes five parallel subsections: "Standards in Early Childhood Education"; "Math Standards and Guidelines"; "Curriculum, Learning, Teaching, and Assessment"; "Professional Development"; and "Toward the Future: Implementation and Policy." As a whole the book: * presents comprehensive summaries of research that provide specific guidelines for standards, curriculum, and teaching; * takes the recent reports and recommendations for early childhood mathematics education to the next level; * integrates practical details and research throughout; and * provides a succinct, but thorough review of research on the topics, sequences, and learning trajectories that children can and should learn at each of their first years of life, with specific developmental guidelines that suggest appropriate content for each topic for each year from 2-year-olds to 7-year-olds. This is an indispensable volume for mathematics educators, researchers, curriculum developers, teachers and policymakers, including those who create standards, scope and sequences, and curricula for young children and professional teacher development materials, and students in mathematics education, early childhood trainers, teacher educators, and faculty in mathematics education.
The 11th Edition of Helping Children Learn Mathematics is designed to help those who are or will be teachers of mathematics in elementary schools help children develop understanding and proficiency with mathematics so they can solve problems. This text is built around three main themes: helping children make sense of mathematics, incorporating practical experiences, and using research to guide teaching. It also integrates connections and implications from the Common Core Standards: Mathematics (CCSS-M).
This text on mathematical problem solving provides a comprehensive outline of "problemsolving-ology," concentrating on strategy and tactics. It discusses a number of standard mathematical subjects such as combinatorics and calculus from a problem solver's perspective.
Effective Technology: Integration for Disabled Children: The Family Perspective explores microcomputer-based special education intervention programs aimed at advancing mildly handicapped children and empowering their parents. The book applies the stress, resources and coping model to families with disabled children, examining specific components of the pro§ posed model through family surveys and studies, and presenting future directions for research and experimentation. The book also offers an overview of the research related to effective integration of computers into the special education system, with particular attention to a cognitive approach to skill development through various software programs. Effective Technol§ ogy: Integration For Disabled Children is intended for researchers and practitioners in a wide range of fields interested in family research and parent-empowering interventions as well as for those involved in technology integration within special education contexts.
Teachers have the responsibility of helping all of their students construct the disposition and knowledge needed to live successfully in a complex and rapidly changing world. To meet the challenges of the 21st century, students will especially need mathematical power: a positive disposition toward mathematics (curiosity and self confidence), facility with the processes of mathematical inquiry (problem solving, reasoning and communicating), and well connected mathematical knowledge (an understanding of mathematical concepts, procedures and formulas). This guide seeks to help teachers achieve the capability to foster children's mathematical power - the ability to excite them about mathematics, help them see that it makes sense, and enable them to harness its might for solving everyday and extraordinary problems. The investigative approach attempts to foster mathematical power by making mathematics instruction process-based, understandable or relevant to the everyday life of students. Past efforts to reform mathematics instruction have focused on only one or two of these aims, whereas the investigative approach accomplishes all three. By teaching content in a purposeful context, an inquiry-based fashion, and a meaningful manner, this approach promotes chilren's mathematical learning in an interesting, thought-provoking and comprehensible way. This teaching guide is designed to help teachers appreciate the need for the investigative approach and to provide practical advice on how to make this approach happen in the classroom. It not only dispenses information, but also serves as a catalyst for exploring, conjecturing about, discussing and contemplating the teaching and learning of mathematics.
This book adopts an interdisciplinary approach to investigate the development of mathematical reasoning in both children and adults and to show how understanding the learner’s cognitive processes can help teachers develop better strategies to teach mathematics. This contributed volume departs from the interdisciplinary field of psychology of mathematics education and brings together contributions by researchers from different fields and disciplines, such as cognitive psychology, neuroscience and mathematics education. The chapters are presented in the light of the three instances that permeate the entire book: the learner, the teacher, and the teaching and learning process. Some of the chapters analyse the didactic challenges that teachers face in the classroom, such as how to interpret students' reasoning, the use of digital technologies, and their knowledge about mathematics. Other chapters examine students' opinions about mathematics, and others analyse the ways in which students solve situations that involve basic and complex mathematical concepts. The approaches adopted in the description and interpretation of the data obtained in the studies documented in this book point out the limits, the development, and the possibilities of students' thinking, and present didactic and cognitive perspectives to the learning scenarios in different school settings. Mathematical Reasoning of Children and Adults: Teaching and Learning from an Interdisciplinary Perspective will be a valuable resource for both mathematics teachers and researchers studying the development of mathematical reasoning in different fields, such as mathematics education, educational psychology, cognitive psychology, and developmental psychology.