Physiological Ecology of North American Plant Communities

Physiological Ecology of North American Plant Communities

Author: Brain F. Chabot

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 704

ISBN-13: 9400948301

DOWNLOAD EBOOK

Although, as W.D. Billings notes in his chapter in this book. the development of physiological ecology can be traced back to the very beginnings of the study of ecology it is clear that the modern development of this field in North America is due in the large part to the efforts of Billings alone. The foundation that Billings laid in the late 1950s came from his own studies on deserts and subsequently arctic and alpine plants, and also from his enormous success in instilling enthusiasm for the field in the numerous students attracted to the plant ecology program at Duke University. Billings' own studies provided the model for subsequent work in this field. Physiological techniques. normally confined to the laboratory. were brought into the field to examine processes under natural environmental conditions. These field studies were accompanied by experiments under controlled conditions where the relative impact of various factors could be assessed and further where genetic as opposed to environmental influences could be separated. This blending of field and laboratory approaches promoted the design of experiments which were of direct relevance to understanding the distribution and abundance of plants in nature. Physiological mechanisms were studied and assessed in the context of the functioning of plants under natural conditions rather than as an end in itself.


Size- and Age-Related Changes in Tree Structure and Function

Size- and Age-Related Changes in Tree Structure and Function

Author: Frederick C. Meinzer

Publisher: Springer Science & Business Media

Published: 2011-06-29

Total Pages: 511

ISBN-13: 9400712421

DOWNLOAD EBOOK

Millions of trees live and grow all around us, and we all recognize the vital role they play in the world’s ecosystems. Publicity campaigns exhort us to plant yet more. Yet until recently comparatively little was known about the root causes of the physical changes that attend their growth. Since trees typically increase in size by three to four orders of magnitude in their journey to maturity, this gap in our knowledge has been a crucial issue to address. Here at last is a synthesis of the current state of our knowledge about both the causes and consequences of ontogenetic changes in key features of tree structure and function. During their ontogeny, trees undergo numerous changes in their physiological function, the structure and mechanical properties of their wood, and overall architecture and allometry. This book examines the central interplay between these changes and tree size and age. It also explores the impact these changes can have, at the level of the individual tree, on the emerging characteristics of forest ecosystems at various stages of their development. The analysis offers an explanation for the importance of discriminating between the varied physical properties arising from the nexus of size and age, as well as highlighting the implications these ontogenetic changes have for commercial forestry and climate change. This important and timely summation of our knowledge base in this area, written by highly respected researchers, will be of huge interest, not only to researchers, but also to forest managers and silviculturists.


Plant Litter

Plant Litter

Author: Björn Berg

Publisher: Springer Science & Business Media

Published: 2013-11-19

Total Pages: 324

ISBN-13: 3642388213

DOWNLOAD EBOOK

Since the publication of the 2nd edition, there have been substantial developments in the field of litter decomposition. This fully revised and updated 3rd edition of Plant Litter reflects and discusses new findings and re-evaluates earlier ones in light of recent research and with regard to current areas of investigation. The availability of several long-term studies allows a more in-depth approach to decomposition patterns and to the later stages of decomposition, as well as to humus formation and accumulation. The latest information focuses on three fields: - the effects of manganese on decomposition and possibly on carbon sequestration, - new findings on decomposition dynamics, and - the new analytical technique using 13C-NMR.