The last 15 years have seen an explosion of interest in wavelets with applications in fields such as image compression, turbulence, human vision, radar and earthquake prediction. Wavelets represent an area that combines signal in image processing, mathematics, physics and electrical engineering. As such, this title is intended for the wide audience that is interested in mastering the basic techniques in this subject area, such as decomposition and compression.
This book is intended for use in the teaching of graduate and senior undergraduate courses on multiresolution signal and geometry processing in the engineering and related disciplines. It has been used for several years for teaching purposes in the Department of Electrical and Computer Engineering at the University of Victoria and has been well received by students. This book provides a comprehensive introduction to multiresolution signal and geometry processing, with a focus on both theory and applications. The book has two main components, corresponding to multiresolution processing in the contexts of: 1) signal processing and 2) geometry processing. The signal-processing component of the book studies one-dimensional and multi-dimensional multirate systems, considering multirate structures such as sampling-rate converters, filter banks, and transmultiplexers. A particularly strong emphasis is placed on filter banks. Univariate and multivariate wavelet systems are examined, with the biorthogonal and orthonormal cases both being considered. The relationship between filter banks and wavelet systems is established. Several applications of filter banks and wavelets in signal processing are covered, including signal coding, image compression, and noise reduction. For readers interested in image compression, a detailed overview of the JPEG-2000 standard is also provided. Some other applications of multirate systems are considered, such as transmultiplexers for communication systems (e.g., multicarrier modulation). The geometry-processing component of the book studies subdivision surfaces and subdivision wavelets. Some mathematical background relating to geometry processing is provided, including topics such as homogeneous coordinate transformations, manifolds, surface representations, and polygon meshes. Several subdivision schemes are examined in detail, including the Loop, Kobbelt sqrt(3), and Catmull-Clark methods. The application of subdivision surfaces in computer graphics is considered. A detailed introduction to functional analysis is provided, for those who would like a deeper understanding of the mathematics underlying wavelets and filter banks. For those who are interested in software applications of the material covered in the book, appendices are included that introduce the CGAL and OpenGL libraries. Also, an appendix on the SPL library (which was developed for use with this book) is included. Throughout the book, many worked-through examples are provided. Problem sets are also provided for each major topic covered.
This volume is designed as a textbook for an introductory course on wavelet analysis and time-frequency analysis aimed at graduate students or advanced undergraduates in science and engineering. It can also be used as a self-study or reference book by practicing researchers in signal analysis and related areas. Since the expected audience is not presumed to have a high level of mathematical background, much of the needed analytical machinery is developed from the beginning. The only prerequisites for the first eight chapters are matrix theory, Fourier series, and Fourier integral transforms. Each of these chapters ends with a set of straightforward exercises designed to drive home the concepts just covered, and the many graphics should further facilitate absorption.
Applications of wavelet analysis to the geophysical sciences grew from Jean Morlet's work on seismic signals in the 1980s. Used to detect signals against noise, wavelet analysis excels for transients or for spatiallylocalized phenomena. In this fourth volume in the renown WAVELET ANALYSIS AND ITS APPLICATIONS Series, Efi Foufoula-Georgiou and Praveen Kumar begin with a self-contained overview of the nature, power, and scope of wavelet transforms. The eleven originalpapers that follow in this edited treatise show how geophysical researchers are using wavelets to analyze such diverse phenomena as intermittent atmospheric turbulence, seafloor bathymetry, marine and other seismic data, and flow in aquifiers. Wavelets in Geophysics will make informative reading for geophysicists seeking an up-to-date account of how these tools are being used as well as for wavelet researchers searching for ideas for applications, or even new points of departure. Includes twelve original papers written by experts in the geophysical sciences Provides a self-contained overview of the nature, power, and scope of wavelet transforms Presents applications of wavelets to geophysical phenomena such as: The sharp events of seismic data, Long memory processes, such as fluctuation in the level of the Nile, A structure preserving decomposition of turbulence signals
Signal Processing for Neuroscientists introduces analysis techniques primarily aimed at neuroscientists and biomedical engineering students with a reasonable but modest background in mathematics, physics, and computer programming. The focus of this text is on what can be considered the 'golden trio' in the signal processing field: averaging, Fourier analysis, and filtering. Techniques such as convolution, correlation, coherence, and wavelet analysis are considered in the context of time and frequency domain analysis. The whole spectrum of signal analysis is covered, ranging from data acquisition to data processing; and from the mathematical background of the analysis to the practical application of processing algorithms. Overall, the approach to the mathematics is informal with a focus on basic understanding of the methods and their interrelationships rather than detailed proofs or derivations. One of the principle goals is to provide the reader with the background required to understand the principles of commercially available analyses software, and to allow him/her to construct his/her own analysis tools in an environment such as MATLAB®. - Multiple color illustrations are integrated in the text - Includes an introduction to biomedical signals, noise characteristics, and recording techniques - Basics and background for more advanced topics can be found in extensive notes and appendices - A Companion Website hosts the MATLAB scripts and several data files: http://www.elsevierdirect.com/companion.jsp?ISBN=9780123708670
This book provides an in-depth, integrated, and up-to-date exposition of the topic of signal decomposition techniques. Application areas of these techniques include speech and image processing, machine vision, information engineering, High-Definition Television, and telecommunications. The book will serve as the major reference for those entering the field, instructors teaching some or all of the topics in an advanced graduate course and researchers needing to consult an authoritative source.n The first book to give a unified and coherent exposition of multiresolutional signal decomposition techniquesn Classroom tested textbook clearly describes the commonalities among three key methods-transform coding, and wavelet transformsn Gives comparative performance evaluations of many proposed techniques
This volume reflects the latest developments in the area of wavelet analysis and its applications. Since the cornerstone lecture of Yves Meyer presented at the ICM 1990 in Kyoto, to some extent, wavelet analysis has often been said to be mainly an applied area. However, a significant percentage of contributions now are connected to theoretical mathematical areas, and the concept of wavelets continuously stretches across various disciplines of mathematics. Key topics: Approximation and Fourier Analysis Construction of Wavelets and Frame Theory Fractal and Multifractal Theory Wavelets in Numerical Analysis Time-Frequency Analysis Adaptive Representation of Nonlinear and Non-stationary Signals Applications, particularly in image processing Through the broad spectrum, ranging from pure and applied mathematics to real applications, the book will be most useful for researchers, engineers and developers alike.
Overview Historically, the concept of "ondelettes" or "wavelets" originated from the study of time-frequency signal analysis, wave propagation, and sampling theory. One of the main reasons for the discovery of wavelets and wavelet transforms is that the Fourier transform analysis does not contain the local information of signals. So the Fourier transform cannot be used for analyzing signals in a joint time and frequency domain. In 1982, Jean MorIet, in collaboration with a group of French engineers, first introduced the idea of wavelets as a family of functions constructed by using translation and dilation of a single function, called the mother wavelet, for the analysis of nonstationary signals. However, this new concept can be viewed as the synthesis of various ideas originating from different disciplines including mathematics (Calder6n-Zygmund operators and Littlewood-Paley theory), physics (coherent states in quantum mechanics and the renormalization group), and engineering (quadratic mirror filters, sideband coding in signal processing, and pyramidal algorithms in image processing). Wavelet analysis is an exciting new method for solving difficult problems in mathematics, physics, and engineering, with modern applications as diverse as wave propagation, data compression, image processing, pattern recognition, computer graphics, the detection of aircraft and submarines, and improvement in CAT scans and other medical image technology. Wavelets allow complex information such as music, speech, images, and patterns to be decomposed into elementary forms, called the fundamental building blocks, at different positions and scales and subsequently reconstructed with high precision.