The 60th birthday of Peter Lax was celebrated at Berkeley by a conference entitled Wave Motion: theory, application and computation held at the mathematical Sciences Research Institute, June 9-12, 1986. Peter Lax has made profound and essential contributions to the topics described by the title of the conference, and has also contributed in important ways to many other mathematical subjects, and as a result this conference volume dedicated to him includes research work on a variety of topics, not all clearly related to its title.
This book is open access under a CC BY 4.0 license. This easy-to-read book introduces the basics of solving partial differential equations by means of finite difference methods. Unlike many of the traditional academic works on the topic, this book was written for practitioners. Accordingly, it especially addresses: the construction of finite difference schemes, formulation and implementation of algorithms, verification of implementations, analyses of physical behavior as implied by the numerical solutions, and how to apply the methods and software to solve problems in the fields of physics and biology.
This book explores the connection between algebraic structures in topology and computational methods for 3-dimensional electric and magnetic field computation. The connection between topology and electromagnetism has been known since the 19th century, but there has been little exposition of its relevance to computational methods in modern topological language. This book is an effort to close that gap. It will be of interest to people working in finite element methods for electromagnetic computation and those who have an interest in numerical and industrial applications of algebraic topology.
Dynamical systems that are amenable to formulation in terms of a Hamiltonian function or operator encompass a vast swath of fundamental cases in applied mathematics and physics. This carefully edited volume represents work carried out during the special program on Hamiltonian Systems at MSRI in the Fall of 2018. Topics covered include KAM theory, polygonal billiards, Arnold diffusion, quantum hydrodynamics, viscosity solutions of the Hamilton–Jacobi equation, surfaces of locally minimal flux, Denjoy subsystems and horseshoes, and relations to symplectic topology.
This IMA Volume in Mathematics and its Applications COMPUTATIONAL WAVE PROPAGATION is based on the workshop with the same title and was an integral part of the 1994-1995 IMA program on "Waves and Scattering." We would like to thank Bjorn Engquist and Gregory A. Kriegsmann for their hard work in organizing this meeting and in editing the proceedings. We also take this opportunity to thank the National Science Foundation, the Army Research Office, and the Office of Naval Research, whose financial support made this workshop possible. A vner Friedman Robert Gulliver v PREFACE Although the field of wave propagation and scattering has its classical roots in the last century, it has enjoyed a rich and vibrant life over the past 50 odd years. Scientists, engineers, and mathematicians have devel oped sophisticated asymptotic and numerical tools to solve problems of ever increasing complexity. Their work has been spurred on by emerging and maturing technologies, primarily concerned with the propagation and reception of information, and the efficient transmission of energy. The vitality of this scientific field is not waning. Increased demands to precisely quantify, measure, and control the propagation and scattering of waves in increasingly complex settings pose challenging scientific and mathematical problems. These push the envelope of analysis and comput ing, just as their forerunners did 50 years ago. These modern technological problems range from using underwater sound to monitor and predict global warming, to periodically embedding phase-sensitive amplifiers in optical fibers to insure long range digital communication.
This book describes the interaction of commutative algebra with other areas of mathematics, including algebraic geometry, group cohomology, and combinatorics.