Viscoelastic Modeling for Structural Analysis

Viscoelastic Modeling for Structural Analysis

Author: Jean Salençon

Publisher: John Wiley & Sons

Published: 2019-04-29

Total Pages: 139

ISBN-13: 1119618355

DOWNLOAD EBOOK

The theory of viscoelasticity has been built up as a mechanical framework for modeling important aspects of the delayed behavior of a wide range of materials. This book, primarily intended for civil and mechanical engineering students, is devoted specifically to linear viscoelastic behavior within the small perturbation framework. The fundamental concepts of viscoelastic behavior are first presented from the phenomenological viewpoint of the basic creep and relaxation tests within the simple one-dimensional framework. The linearity and non-ageing hypotheses are introduced successively, with the corresponding expressions of the constitutive law in the form of Boltzmann’s integral operators and Riemann’s convolution products respectively. Applications to simple quasi-static processes underline the dramatic and potentially catastrophic consequences of not taking viscoelastic delayed behavior properly into account at the design stage. Within the three-dimensional continuum framework, the linear viscoelastic constitutive equation is written using compact mathematical notations and takes material symmetries into account. The general analysis of quasi-static linear viscoelastic processes enhances similarities with, and differences from, their elastic counterparts. Simple typical case studies illustrate the importance of an in-depth physical understanding of the problem at hand prior to its mathematical analysis.


Viscoelastic Modeling for Structural Analysis

Viscoelastic Modeling for Structural Analysis

Author: Jean Salençon

Publisher: John Wiley & Sons

Published: 2019-04-26

Total Pages: 208

ISBN-13: 1119618339

DOWNLOAD EBOOK

The theory of viscoelasticity has been built up as a mechanical framework for modeling important aspects of the delayed behavior of a wide range of materials. This book, primarily intended for civil and mechanical engineering students, is devoted specifically to linear viscoelastic behavior within the small perturbation framework. The fundamental concepts of viscoelastic behavior are first presented from the phenomenological viewpoint of the basic creep and relaxation tests within the simple one-dimensional framework. The linearity and non-ageing hypotheses are introduced successively, with the corresponding expressions of the constitutive law in the form of Boltzmann’s integral operators and Riemann’s convolution products respectively. Applications to simple quasi-static processes underline the dramatic and potentially catastrophic consequences of not taking viscoelastic delayed behavior properly into account at the design stage. Within the three-dimensional continuum framework, the linear viscoelastic constitutive equation is written using compact mathematical notations and takes material symmetries into account. The general analysis of quasi-static linear viscoelastic processes enhances similarities with, and differences from, their elastic counterparts. Simple typical case studies illustrate the importance of an in-depth physical understanding of the problem at hand prior to its mathematical analysis.


Viscoelastic Structures

Viscoelastic Structures

Author: Aleksey D. Drozdov

Publisher: Academic Press

Published: 1998-02-09

Total Pages: 615

ISBN-13: 008054360X

DOWNLOAD EBOOK

Viscoelastic Structures covers the four basic problems in the mechanics of viscoelastic solids and structural members: construction of constitutive models for the description of thermoviscoelastic behavior of polymers; mathematical modeling of manufacturing advanced composite materials; optimal-design of structural members and technological processes of their fabrication; and stability analysis for thin-walled structural members driven by time-varying loads.This book familiarizes the reader with state-of-the-art mathematical models for advanced materials and processes, and demonstrates their applications in modeling and simulating specific manufacturing processes. Viscoelastic Structures also demonstrates the effects of material, geometrical, and technological parameters on the characteristic features of viscoelastic structures.1Presents state-of-the-art mathematical models and methods which serve for the analysis of advanced technological processes1Includes numerous examples to demonstrate theory which have not been included in previous literature1Employs one consistent, user-friendly method to study a number of technological processes1Features unique approach to aging materials1Appendices cover background material on tensor calculus, kinematics with finite strains, stochastic differential equations, and evolutionary equations with operator coefficients


Viscoelasticity — Basic Theory and Applications to Concrete Structures

Viscoelasticity — Basic Theory and Applications to Concrete Structures

Author: Guillermo J. Creus

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 177

ISBN-13: 3642826865

DOWNLOAD EBOOK

This book contains notes for a one-semester graduate course which is an introduction to the study of viscoelasticity and creep of concrete. Emphasis was set on the conceptual aspects rather than on the mathematical or computational refinements. The mathematical structure of viscoelasticity is discussed with some care because it clarifies the basic concepts and has important consequences in computa tional applications. Basic ideas are exemplified using the simplest problems and constitutive models in order to be able to show complete solutions. In the computational applications we have also chosen to present the sim plest situations with the greatest possible detail. It has been the author's experience that once the basic concepts are well understood the students are able to follow the rest of the course more easily and to accede to more advanced literature and applications. Chapters I to III furnish the foundations for the course, that may be expanded in diverse ways. If we are interested in finite elements applications we should look at Chapter IV and then go direct ly to Chapter VII. If we are interested in the simplified analysis of frame structures we should study Chapter VI in detail. Chapter V re views the viscoelastic behavior of concrete and Chapter VIII studies the problem of creep buckling. At the end of each chapter we give se lected references to works that complete and extend the subject matter.


Structural Analysis of Historical Constructions - 2 Volume Set

Structural Analysis of Historical Constructions - 2 Volume Set

Author: Claudio Modena

Publisher: CRC Press

Published: 2004-11-15

Total Pages: 758

ISBN-13: 9780415363792

DOWNLOAD EBOOK

Structural Analysis of Historical Constructions contains about 160 papers that were presented at the IV International Seminar on Structural Analysis of Historical Constructions that was held from 10 to 13 November, 2004 in Padova Italy. Following publications of previous seminars that were organized in Barcelona, Spain (1995 and 1998) and Guimarães, Portugal (2001), state-of-the-art information is presented in these two volumes on the preservation, protection, and restoration of historical constructions, both comprising monumental structures and complete city centers. These two proceedings volumes are devoted to the possibilities of numerical and experimental techniques in the maintenance of historical structures. In this respect, the papers, originating from over 30 countries, are subdivided in the following areas: Historical aspects and general methodology, Materials and laboratory testing, Non-destructive testing and inspection techniques, Dynamic behavior and structural monitoring, Analytical and numerical approaches, Consolidation and strengthening techniques, Historical timber and metal structures, Seismic analysis and vulnerability assessment, Seismic strengthening and innovative systems, Case studies. Structural Analysis of Historical Constructions is a valuable source of information for scientists and practitioners working on structure-related issues of historical constructions


Viscoelasticity

Viscoelasticity

Author: Wilhelm Flügge

Publisher: Springer Science & Business Media

Published: 2013-03-14

Total Pages: 204

ISBN-13: 3662022761

DOWNLOAD EBOOK

No mathematical theory can completely describe the complex world around us. Every theory is aimed at a certain class of phenomena, formulates their essential features, and disregards what is of minor importance. The theory meets its limits of applicability where a dis regarded influence becomes important. Thus, rigid-body dynamics describes in many cases the motion of actual bodies with high accu racy, but it fails to produce more than a few general statements in the case of impact, because elastic or anelastic deformation, no matter how local or how small, attains a dominating influence. For a long time mechanics of deformable bodies has been based upon Hooke's law - that is, upon thE" assumption of linear elasticity. It was well known that most engineering materials like metals, con crde, wood, soil, are not linearly elastic or, are so within limits too narrow to cover tne range of pl'actical intcrest. Nevertheless, almost all routine stress analysis is still based on Hooke T s law be cause of its simplicity. In the course of time engineers have become increasingly con scious of the importance of the anelastic behavior of many materials, and mathematical formulations have been attempted and applied to practical problems. Outstanding among them are the theories of ide ally plastic and of viscoelastic materials. While plastic behavior is essentially nonlinear (piecewise linear at best), viscoelasticity, like elasticity, permits a linear theory. This theory of linear visco elasticity is the subject of tbe present book.


Engineering Viscoelasticity

Engineering Viscoelasticity

Author: Danton Gutierrez-Lemini

Publisher: Springer Science & Business Media

Published: 2013-09-12

Total Pages: 379

ISBN-13: 1461481392

DOWNLOAD EBOOK

Engineering Viscoelasticity covers all aspects of the thermo- mechanical response of viscoelastic substances that a practitioner in the field of viscoelasticity would need to design experiments, interpret test data, develop stress-strain models, perform stress analyses, design structural components, and carry out research work. The material in each chapter is developed from the elementary to the esoteric, providing the background in mathematics and mechanics that are central to understanding the subject matter being presented. This book also examines how viscoelastic materials respond to the application of loads, and provides practical guidelines to use them in the design of commercial, military and industrial applications.


Structural Analysis of Composite Wind Turbine Blades

Structural Analysis of Composite Wind Turbine Blades

Author: Dimitris I Chortis

Publisher: Springer Science & Business Media

Published: 2013-06-29

Total Pages: 240

ISBN-13: 3319008641

DOWNLOAD EBOOK

This book concerns the development of novel finite elements for the structural analysis of composite beams and blades. The introduction of material damping is also an important aspect of composite structures and it is presented here in terms of their static and dynamic behavior. The book thoroughly presents a new shear beam finite element, which entails new blade section mechanics, capable of predicting structural blade coupling due to composite coupling and/or internal section geometry. Theoretical background is further expanded towards the inclusion of nonlinear structural blade models and damping mechanics for composite structures. The models effectively include geometrically nonlinear terms due to large displacements and rotations, improve the modeling accuracy of very large flexible blades, and enable the modeling of rotational stiffening and buckling, as well as, nonlinear structural coupling. Validation simulations on specimen level study the geometric nonlinearities effect on the modal frequencies and damping values of composite strips of various angle-ply laminations under either tensile or buckling loading. A series of correlation cases between numerical predictions and experimental measurements give credence to the developed nonlinear beam finite element models and underline the essential role of new nonlinear damping and stiffness terms.