Vector Analysis and Cartesian Tensors

Vector Analysis and Cartesian Tensors

Author: D. E. Bourne

Publisher: Academic Press

Published: 2014-05-10

Total Pages: 271

ISBN-13: 1483260704

DOWNLOAD EBOOK

Vector Analysis and Cartesian Tensors, Second Edition focuses on the processes, methodologies, and approaches involved in vector analysis and Cartesian tensors, including volume integrals, coordinates, curves, and vector functions. The publication first elaborates on rectangular Cartesian coordinates and rotation of axes, scalar and vector algebra, and differential geometry of curves. Discussions focus on differentiation rules, vector functions and their geometrical representation, scalar and vector products, multiplication of a vector by a scalar, and angles between lines through the origin. The text then elaborates on scalar and vector fields and line, surface, and volume integrals, including surface, volume, and repeated integrals, general orthogonal curvilinear coordinates, and vector components in orthogonal curvilinear coordinates. The manuscript ponders on representation theorems for isotropic tensor functions, Cartesian tensors, applications in potential theory, and integral theorems. Topics include geometrical and physical significance of divergence and curl, Poisson's equation in vector form, isotropic scalar functions of symmetrical second order tensors, and diagonalization of second-order symmetrical tensors. The publication is a valuable reference for mathematicians and researchers interested in vector analysis and Cartesian tensors.


Vector Analysis and Cartesian Tensors

Vector Analysis and Cartesian Tensors

Author: Donald Edward Bourne

Publisher: CRC Press

Published: 2018-05-04

Total Pages: 314

ISBN-13: 1351085972

DOWNLOAD EBOOK

This is a comprehensive self-contained text suitable for use by undergraduate mathematics, science and engineering students following courses in vector analysis. The earlier editions have been used extensively in the design and teaching of may undergraduate courses. Vectors are introduced in terms of Cartesian components, an approach which is found to appeal to many students because of the basic algebraic rules of composition of vectors and the definitions of gradient divergence and curl are thus made particularly simple. The theory is complete, and intended to be as rigorous as possible at the level at which it is aimed.


Linear Vector Spaces and Cartesian Tensors

Linear Vector Spaces and Cartesian Tensors

Author: James Kenyon Knowles

Publisher: Oxford University Press on Demand

Published: 1998

Total Pages: 120

ISBN-13: 9780195112542

DOWNLOAD EBOOK

Linear Vector Spaces and Cartesian Tensors is primarily concerned with the theory of finite dimensional Euclidian spaces. It makes a careful distinction between real and complex spaces, with an emphasis on real spaces, and focuses on those elements of the theory that are especially important in applications to continuum mechanics. The geometric content of the theory and the distinction between matrices and tensors are emphasized, and absolute- and component-notation are both employed. While the mathematics is rigorous, the style is casual. Chapter 1 deals with the basic notion of a linear vector space; many examples of such spaces are given, including infinite-dimensional ones. The idea of a linear transformation of a vector space into itself is introduced and explored in Chapter 2. Chapter 3 deals with linear transformations on finite dimensional real Euclidean spaces (i.e., Cartesian tensors), focusing on symmetric tensors, orthogonal tensors, and the interaction of both in the kinetically important polar decomposition theorem. Chapter 4 exploits the ideas introduced in the first three chapters in order to construct the theory of tensors of rank four, which are important in continuum mechanics. Finally, Chapter 5 concentrates on applications of the earlier material to the kinematics of continua, to the notion of isotropic materials, to the concept of scalar invariant functions of tensors, and to linear dynamical systems. Exercises and problems of varying degrees of difficulty are included at the end of each chapter. Two appendices further enhance the text: the first is a short list of mathematical results that students should already be familiar with, and the second contains worked out solutions to almost all of the problems. Offering many unusual examples and applications, Linear Vector Spaces and Cartesian Tensors serves as an excellent text for advanced undergraduate or first year graduate courses in engineering mathematics and mechanics. Its clear writing style also makes this work useful as a self-study guide.


Vectors, Tensors and the Basic Equations of Fluid Mechanics

Vectors, Tensors and the Basic Equations of Fluid Mechanics

Author: Rutherford Aris

Publisher: Courier Corporation

Published: 2012-08-28

Total Pages: 322

ISBN-13: 048613489X

DOWNLOAD EBOOK

Introductory text, geared toward advanced undergraduate and graduate students, applies mathematics of Cartesian and general tensors to physical field theories and demonstrates them in terms of the theory of fluid mechanics. 1962 edition.


Vector and Tensor Analysis, Second Edition

Vector and Tensor Analysis, Second Edition

Author: Eutiquio C. Young

Publisher: CRC Press

Published: 1992-12-22

Total Pages: 530

ISBN-13: 9780824787899

DOWNLOAD EBOOK

Revised and updated throughout, this book presents the fundamental concepts of vector and tensor analysis with their corresponding physical and geometric applications - emphasizing the development of computational skills and basic procedures, and exploring highly complex and technical topics in simplified settings.;This text: incorporates transformation of rectangular cartesian coordinate systems and the invariance of the gradient, divergence and the curl into the discussion of tensors; combines the test for independence of path and the path independence sections; offers new examples and figures that demonstrate computational methods, as well as carify concepts; introduces subtitles in each section to highlight the appearance of new topics; provides definitions and theorems in boldface type for easy identification. It also contains numerical exercises of varying levels of difficulty and many problems solved.


A History of Vector Analysis

A History of Vector Analysis

Author: Michael J. Crowe

Publisher: Courier Corporation

Published: 1994-01-01

Total Pages: 306

ISBN-13: 0486679101

DOWNLOAD EBOOK

Prize-winning study traces the rise of the vector concept from the discovery of complex numbers through the systems of hypercomplex numbers to the final acceptance around 1910 of the modern system of vector analysis.


A Brief on Tensor Analysis

A Brief on Tensor Analysis

Author: James G. Simmonds

Publisher: Springer Science & Business Media

Published: 2012-10-31

Total Pages: 124

ISBN-13: 1441985220

DOWNLOAD EBOOK

In this text which gradually develops the tools for formulating and manipulating the field equations of Continuum Mechanics, the mathematics of tensor analysis is introduced in four, well-separated stages, and the physical interpretation and application of vectors and tensors are stressed throughout. This new edition contains more exercises. In addition, the author has appended a section on Differential Geometry.


Vector Analysis and Cartesian Tensors, Third edition

Vector Analysis and Cartesian Tensors, Third edition

Author: P C Kendall

Publisher: Routledge

Published: 2017-09-06

Total Pages: 324

ISBN-13: 1351405616

DOWNLOAD EBOOK

This is a comprehensive and self-contained text suitable for use by undergraduate mathematics, science and engineering students. Vectors are introduced in terms of cartesian components, making the concepts of gradient, divergent and curl particularly simple. The text is supported by copious examples and progress can be checked by completing the many problems at the end of each section. Answers are provided at the back of the book.