"Kids love to move. But how do we harness all that kinetic energy effectively for math learning? In Math on the Move, Malke Rosenfeld shows how pairing math concepts and whole body movement creates opportunities for students to make sense of math in entirely new ways. Malke shares her experience creating dynamic learning environments by: exploring the use of the body as a thinking tool, highlighting mathematical ideas that are usefully explored with a moving body, providing a range of entry points for learning to facilitate a moving math classroom. ..."--Publisher description.
This stress-free layperson's introduction to the intriguing world of numbers is designed to acquaint the general reader with the elegance and wonder of mathematics. Unlike the typical boot-camp experience of a high school or college calculus course, Jefferson Hane Weaver's approach is more like a relaxing and educational walking tour. Along the way, tour-guide Weaver points out, explains, and invites readers to sample some of the most interesting topics. Even the most math-phobic among us will be lulled into appreciation by Weaver's creative and disarming discussions of this supposedly formidable intellectual discipline. He covers all the basics: irrational and imaginary numbers, algebra, geometry, trigonometry, differential and integral calculus, the concepts of zero and infinity, vectors, set theory, chance and probability, and much more. In conclusion, he provides five fascinating historical profiles, reviewing the life and work of Copernicus, Descartes, Kepler, Galileo, and Newton. More than anyone else, these five geniuses were responsible for creating the mathematical foundations of the physical sciences, which continue to make possible extraordinary discoveries and technological achievements. This enjoyable volume gives readers a working knowledge of math's most important concepts, an appreciation of its elegant logical structure, and an understanding of its historical significance in creating our contemporary world.
Geometry with Geometry Explorer combines a discovery-based geometry text with powerful integrated geometry software. This combination allows for the deep exploration of topics that would be impossible without well-integrated technology, such as hyperbolic geometry, and encourages the kind of experimentation and self-discovery needed for students to develop a natural intuition for various topics in geometry..
Designed to introduce readers to how graphs tell stories. Readers will see bar, line, pie, and pictographs, as well as tally charts, and be encouraged to read the stories graphs tell and create their own stories. Activities build on the material presented.
"The ancient Greeks argued that the best life was filled with beauty, truth, justice, play and love. The mathematician Francis Su knows just where to find them."--Kevin Hartnett, Quanta Magazine" This is perhaps the most important mathematics book of our time. Francis Su shows mathematics is an experience of the mind and, most important, of the heart."--James Tanton, Global Math Project For mathematician Francis Su, a society without mathematical affection is like a city without concerts, parks, or museums. To miss out on mathematics is to live without experiencing some of humanity's most beautiful ideas. In this profound book, written for a wide audience but especially for those disenchanted by their past experiences, an award-winning mathematician and educator weaves parables, puzzles, and personal reflections to show how mathematics meets basic human desires--such as for play, beauty, freedom, justice, and love--and cultivates virtues essential for human flourishing. These desires and virtues, and the stories told here, reveal how mathematics is intimately tied to being human. Some lessons emerge from those who have struggled, including philosopher Simone Weil, whose own mathematical contributions were overshadowed by her brother's, and Christopher Jackson, who discovered mathematics as an inmate in a federal prison. Christopher's letters to the author appear throughout the book and show how this intellectual pursuit can--and must--be open to all.
This book presents teachers with a sound theoretical framework for encouraging children to explore mathematical concepts and become numerate in the 21st century. It shows that mathematical learning can occur in a variety of ways, including when children explore ideas through play, problem solving and problem posing, engage in a rich variety of multimodal learning experiences, pursue self-directed activities and cooperate with others, and make connections between ideas and experiences in their everyday worlds. - Back cover
Is there a way to get students to love math? Dr. Judy Willis responds with an emphatic yes in this informative guide to getting better results in math class. Tapping into abundant research on how the brain works, Willis presents a practical approach for how we can improve academic results by demonstrating certain behaviors and teaching students in a way that minimizes negativity. With a straightforward and accessible style, Willis shares the knowledge and experience she has gained through her dual careers as a math teacher and a neurologist. In addition to learning basic brain anatomy and function, readers will learn how to * Improve deep-seated negative attitudes toward math. * Plan lessons with the goal of "achievable challenge" in mind. * Reduce mistake anxiety with techniques such as errorless math and estimation. * Teach to different individual learning strengths and skill levels. * Spark motivation. * Relate math to students' personal interests and goals. * Support students in setting short-term and long-term goals. * Convince students that they can change their intelligence. With dozens of strategies teachers can use right now, Learning to Love Math puts the power of research directly into the hands of educators. A Brain Owner's Manual, which dives deeper into the structure and function of the brain, is also included—providing a clear explanation of how memories are formed and how skills are learned. With informed teachers guiding them, students will discover that they can build a better brain . . . and learn to love math!
Metamath is a computer language and an associated computer program for archiving, verifying, and studying mathematical proofs. The Metamath language is simple and robust, with an almost total absence of hard-wired syntax, and we believe that it provides about the simplest possible framework that allows essentially all of mathematics to be expressed with absolute rigor. While simple, it is also powerful; the Metamath Proof Explorer (MPE) database has over 23,000 proven theorems and is one of the top systems in the "Formalizing 100 Theorems" challenge. This book explains the Metamath language and program, with specific emphasis on the fundamentals of the MPE database.
Math in Society is a survey of contemporary mathematical topics, appropriate for a college-level topics course for liberal arts major, or as a general quantitative reasoning course.This book is an open textbook; it can be read free online at http://www.opentextbookstore.com/mathinsociety/. Editable versions of the chapters are available as well.