Unravelling the Ultrafast Dynamics of Aqueous Hydrogen Bond Networks with 2D IR Vibrational Echo Spectroscopy

Unravelling the Ultrafast Dynamics of Aqueous Hydrogen Bond Networks with 2D IR Vibrational Echo Spectroscopy

Author: Rongfeng Yuan

Publisher:

Published: 2019

Total Pages:

ISBN-13:

DOWNLOAD EBOOK

Water is one of the most important substances in the world. It is used in a wide range of technologies and is an essential ingredient in all living cells we know today. The structure of water molecule is simple, yet it can form extended and versatile hydrogen bond (HB) network. This ability gives water extraordinary properties, such as high boiling and melting point. At the same time, the hydrogen bond network is not static. The constant breaking and re-forming of hydrogen bond occurs on the picosecond timescale. This dynamic network facilitates many functions of water, including ions solvation, protein folding and electricity conduction. Understanding the structure and dynamics of these processes is therefore of great importance. Ultrafast infrared (IR) spectroscopies offer a great method for accessing the sub-picosecond to picoseconds dynamics while a system in an electronic ground state. During the past two decades, hydrogen bond dynamics has been investigated extensively using ultrafast IR spectroscopies. But many questions still exist such as the effect of ions and confinement on the hydrogen bonding dynamics and the relation between the anomalous proton diffusion in dilute solution and hydrogen bonding. In Chapter 3, we examined the nature of molecular anion hydrogen bonding. The CN stretch of selenocyanate anions (SeCN-) was used as the vibrational probe in heavy water D2O. We observed the non-Condon effect on the CN stretch whose transition dipole changes with the strength of hydrogen bonding with water. In addition, HB rearrangement dynamics reported by SeCN- is almost the same as was that of the OH stretch of HOD molecules. This result shows that this anion does not perturb the surrounding HB network significantly in the low salt concentration solution. This ionic perspective is important and complements the results using OD or OH stretch of HOD molecules, which can only probe the effect of ions in a high salt concentration condition. In Chapter 4, we used SeCN- as the probe to examine water dynamics in confinement, and I focused on the nano waterpool formed in reverse micelles. The water pool is surrounded by surfactants which are further solvated by organic hydrophobic solvents. For large reverse micelle whose diameter is larger than 4 nm, the water pool is usually divided into two regions: the core region where water dynamics is like that in pure water and the interface region where water dynamics is slowed significant due to the confinement. Here we used ultrafast IR spectroscopies to measure the orientational relaxation of SeCN-, which reflects its interaction with water molecules and how "rigid" the HB network is. Based on the comparison between linear IR decomposition and ultrafast anisotropy dynamics, we proposed a three-component model of water in large reverse micelles. The interface component should be further separated into two layers. One layer corresponds to water in contact with the surfactant head group and has very slow reorientation. The other layer corresponds to water molecules whose coordinating structure still resembles that of bulk but the dynamics is slowed down due to the perturbation from confinement. In Chapter 5 and 6, hydrogen bonding dynamics in concentrated salt and acid solutions were investigated. Through electrochemical method, it was found decades ago that proton has extraordinary ion mobility, about 6 times larger than that of cations of similar sizse, such as sodium, ammonium or lithium. The great difference between them results from the cation transport mechanism. In dilute solution, the main transport mechanism of proton is through relay mechanism where the identity of proton transfers from one water molecule to another. This minimizes the physical diffusion of the atoms and greatly increases the proton mobility. The mechanism is generally called Grotthuss mechanism, which was came up with by Grotthuss in 1806 though not on the molecular level. However, the step time of a single proton transfer event between two water molecules is difficult to observe experimentally. Here we used the CN stretch of methyl thiocyanate (MeSCN) as the vibrational probe. In concentrated hydrochloric solutions, it has two frequency resolved states. One state refers to water hydrogen bonded to the nitrogen lone pair while the other state corresponds to hydronium ion hydrogen bonded to the CN. Chemical exchange phenomenon was observed between these two states. Ab initio simulation done by our collaborator shows that the proton hopping is the dominate mechanism for chemical exchange. The comparison experiment done in lithium chloride solution provides further contrast between hydronium and other metal ions. Therefore, we were able to track proton hopping in a time-resolved manner for the first time. Extrapolation to the dilute limit demonstrates that the HB rearrangement in pure water is the driving force of proton hopping in dilute solution.


Hydrogen Bond Reorganization and Vibrational Relaxation in Water Studied with Ultrafast Infrared Spectroscopy

Hydrogen Bond Reorganization and Vibrational Relaxation in Water Studied with Ultrafast Infrared Spectroscopy

Author: Rebecca Anne Nicodemus

Publisher:

Published: 2011

Total Pages: 204

ISBN-13:

DOWNLOAD EBOOK

Water consists of an extended hydrogen bond network that is constantly evolving. More than just a description of the time averaged structure is necessary to understand any process that occurs in water. In this thesis we study the dynamic regime, which involves fluctuations and rearrangements that occur on the tens of femtoseconds to picosecond time scale. The dynamic regime involves hydrogen bond breaking and forming which interlaces with translations and reorientation and ultimately largescale reorganization. Our experimental technique is ultrafast infrared spectroscopy of the OX stretch (where X = H, D, or T) of isotopically dilute water. The OX stretch frequency is sensitive to its environment, and loss of frequency correlation provides a picture of local and collective hydrogen bond dynamics. With pump-probe experiments we are also able to measure vibrational relaxation and reorientational dynamics of water. We present the first infrared linear absorption spectrum of the OT stretch of isotopically dilute tritiated water and compare line shape parameters to the other water isotopologues to provide further evidence that electric field fluctuations properly describe line broadening of the infrared spectrum of water. Measurement of the infrared spectrum of tritiated water is the first step towards an experiment that may be capable of directly monitoring the relative geometry between two water molecules during a hydrogen bond switch. We calculate the change in electric field and transition dipole coupling during an idealized hydrogen switch to determine the correlated frequency shifts one might observe in such an experiment. To test the proposed vibrational relaxation pathway in isotopically dilute water, we present the first pump-probe of tritiated water and the temperature-dependent lifetime of deuterated water (or HOD in H20). For the OT and OH stretch, our experimental findings agree with the proposed mechanism in which the vibrational energy first relaxes to the intramolecular bend. However, evidence from the temperature-dependent measurements of the OD stretch show multiple pathways may be in competition that have different dependencies on temperature. Our results call for further experimental and theoretical studies. We acquire temperature-dependent 2D IR and pump-probe anisotropy measurements of the OD stretch of HOD in H20 in order to test if spectral diffusion, which reports on hydrogen bond rearrangements, and reorientation are correlated in water. We compare the temperature dependence of the picosecond decay to a number of measures of structural relaxation and find similar activation barrier heights and slightly non-Arrhenius behavior, which suggests that the reaction coordinate for hydrogen bond reorganization in water is collective.


The Molecular Dynamics of Hydrogen-bonding Explored with Broadband Two Dimensional Infrared Spectroscopy

The Molecular Dynamics of Hydrogen-bonding Explored with Broadband Two Dimensional Infrared Spectroscopy

Author: Luigi De Marco (Ph. D.)

Publisher:

Published: 2016

Total Pages: 356

ISBN-13:

DOWNLOAD EBOOK

It is no overstatement to claim that hydrogen bonding is the most important intermolecular interaction. On a day-to-day basis, we encounter the peculiar effects of hydrogen bonding in liquid water; however, it is well appreciated that hydrogen bonding is immensely important in many contexts and, in particular, in biological ones. Despite this apparent significance, a general molecular picture of the dynamics of hydrogen-bonding systems is lacking. Over the last two decades, ultrafast multidimensional infrared spectroscopy has emerged as powerful technique for studying molecular dynamics in the condensed phase. By taking advantage of the complex relationship between a molecular oscillator's frequency and its environmental structure, we may understand molecular dynamics from an experimental perspective. However, the study of hydrogen bonding poses a significant technical challenge in that the interaction gives rise to broad resonances in the mid-infrared absorption spectrum. Traditional methods for generating short pulses of mid-infrared light are fundamentally limited in the bandwidth they can produce. Oftentimes, the width of a hydrogen-bonded oscillator's absorption resonance exceeds the broadest bandwidth mid-infrared laser pulse. In this thesis, I describe our development and use of a novel source of short, broadband mid-infrared light pulses that span the entire region of high-frequency molecular vibrations. We use this source as a probe in two-dimensional infrared spectroscopy experiments to study a wide variety hydrogen-bonding systems, including hydrogen-bonded dimers and protein films, with a particular emphasis on liquid water. Across these systems, we observe fascinating trends in the changes in molecular dynamics with increasing complexity of hydrogen bonding. In particular, we find experimental evidence for large deformations of the nuclear potential energy surface, giving rise to extremely anharmonic and collective dynamics. The effect is most dramatic in liquid water, where the rapidly fluctuating hydrogen-bond network results in vibrational excitons wherein O-H stretching motion is delocalized over multiple molecules. In this case, the nuclear potential energy surface is so complex that even simple changes in the mass of the oscillators result in qualitatively different dynamics.


Water Hydrogen Bond Structure and Dynamics in Ionic and Polymeric Aqueous Systems

Water Hydrogen Bond Structure and Dynamics in Ionic and Polymeric Aqueous Systems

Author: Sean Anthony Roget

Publisher:

Published: 2022

Total Pages: 0

ISBN-13:

DOWNLOAD EBOOK

Water is a simple molecule with many unique physical properties that are critical to life on earth. Its properties arise from its extended hydrogen-bonded network, in which water-water hydrogen bonds are constantly breaking and forming. However, in many biological systems and materials, the water network is impacted by the presence of solutes and interfaces. In this thesis, the structure and dynamics of the hydrogen bond network are examined in technologically relevant materials where water plays a key role. The systems studied include fuel cell membranes, hydrogels and concentrated salt solutions. Nonlinear infrared spectroscopy can be used to experimentally observe ultrafast motions of water as well as its structural configurations within complex chemical systems. Polarization-selective pump-probe experiments on the OD stretch of dilute HOD in water provide information on both orientational and vibrational relaxation. Orientational relaxation describes the reorientation dynamics of water molecules in the hydrogen bond network. If angular diffusion is restricted, orientational relaxation also provides insight into how water may be sterically hindered within its environment. Vibrational relaxation describes coupling of vibrational energy absorbed by the HOD molecules to its surrounding media. The vibrational lifetime provides details on the local interactions of HOD and may allow separation of distinct dynamics near different species. Two-dimensional vibrational echo experiments on HOD molecules observe the time scales for structural evolution of the surrounding environment through ultrafast vibrational frequency fluctuations. With these experimental techniques, a holistic picture of the structure and motions of the water hydrogen bond network can be acquired.


Ultrafast Memory Loss and Energy Redistribution in the Hydrogen Bond Network of Liquid Water

Ultrafast Memory Loss and Energy Redistribution in the Hydrogen Bond Network of Liquid Water

Author: Barry Dov Bruner

Publisher:

Published: 2006

Total Pages: 0

ISBN-13: 9780494159194

DOWNLOAD EBOOK

Using two-dimensional infrared spectroscopy, this work has dissected the intermolecular dynamics in the fully resonant hydrogen-bonded network of liquid H2O. This work involved the development of new infrared laser sources with sufficient (muJ) pulse energies, as well an experimental apparatus suitable for performing phase sensitive infrared (IR) spectroscopy. In particular, the development of a diffractive optics based experimental setup for use in the IR, as well as nanofluidics for handling the strong absorption of pure H2O, were found to be necessary for extracting the relevant water dynamics, and are described in detail. Resonant energy transfer on a 100 fs time scale is observed in H2O, as well as extremely fast spectral diffusion that results in a spectral sweep in the OH frequencies on a 50 fs time scale. There is an equally fast dephasing process observed in the system, leading to a near complete loss of inhomogeneity within 50 fs. The net effect is a very efficient redistribution of energy in liquid water. These results are in dramatic contrast to studies of isotopic water and clearly illustrate the importance of studying pure liquid H2O directly. These findings lead to new appreciation of the significance of fully resonant conditions for energy exchange and coupling among different degrees of freedom that can only be probed for pure H2O.


Hydrogen Bond Rearrangements and the Motion of Charge Defects in Water Viewed Using Multidimensional Ultrafast Infrared Spectroscopy

Hydrogen Bond Rearrangements and the Motion of Charge Defects in Water Viewed Using Multidimensional Ultrafast Infrared Spectroscopy

Author: Sean Thomas Roberts

Publisher:

Published: 2010

Total Pages: 337

ISBN-13:

DOWNLOAD EBOOK

(Cont.) Modeling using an empirical valence bond simulation (MS-EVB) model of aqueous NaOH suggests that as the 0-H stretching potential symmetrizes during proton transfer events, overtone transitions of the shared proton contribute strongly to 2D spectra. The rapid loss of offdiagonal intensity results from the spectral sweeping of these vibrational overtones as the solvent modulates the motion of the shared proton. The collective electric field of the solvent is found to be an appropriate reaction coordinate for the formation and modulation of shared proton states. Over picosecond waiting times, spectral features appear in the 2D IR spectra that are indicative of the exchange of population between OH~ ions and HOD molecules due to proton transfer. The construction of a spectral fitting model gives a lower bound of 3 ps for this exchange. Calculations of structural parameters following proton exchange using the MS-EVB simulation model suggest that the observed exchange process corresponds to the formation and breakage of hydrogen bonds donated by the HOD/OD~ pair formed as a result of the proton transfer. A full description of the structural diffusion of the hydroxide ion requires both a description of the local hydrogen bonding structure of the ion as well as the dielectric fluctuations of the surrounding solvent.


Concepts and Methods of 2D Infrared Spectroscopy

Concepts and Methods of 2D Infrared Spectroscopy

Author: Peter Hamm

Publisher: Cambridge University Press

Published: 2011-02-24

Total Pages: 297

ISBN-13: 1139497073

DOWNLOAD EBOOK

2D infrared (IR) spectroscopy is a cutting-edge technique, with applications in subjects as diverse as the energy sciences, biophysics and physical chemistry. This book introduces the essential concepts of 2D IR spectroscopy step-by-step to build an intuitive and in-depth understanding of the method. This unique book introduces the mathematical formalism in a simple manner, examines the design considerations for implementing the methods in the laboratory, and contains working computer code to simulate 2D IR spectra and exercises to illustrate involved concepts. Readers will learn how to accurately interpret 2D IR spectra, design their own spectrometer and invent their own pulse sequences. It is an excellent starting point for graduate students and researchers new to this exciting field. Computer codes and answers to the exercises can be downloaded from the authors' website, available at www.cambridge.org/9781107000056.


Hydrogen Bond Networks

Hydrogen Bond Networks

Author: Marie-Claire Bellisent-Funel

Publisher: Springer

Published: 2014-03-14

Total Pages: 558

ISBN-13: 9789401583336

DOWNLOAD EBOOK

The almost universal presence of water in our everyday lives and the very `common' nature of its presence and properties possibly deflects attention from the fact that it has a number of very unusual characteristics which, furthermore, are found to be extremely sensitive to physical parameters, chemical environment and other influences. Hydrogen-bonding effects, too, are not restricted to water, so it is necessary to investigate other systems as well, in order to understand the characteristics in a wider context. Hydrogen Bond Networks reflects the diversity and relevance of water in subjects ranging from the fundamentals of condensed matter physics, through aspects of chemical reactivity to structure and function in biological systems.