Universality in Set Theories

Universality in Set Theories

Author: Manuel Bremer

Publisher: Walter de Gruyter

Published: 2013-05-02

Total Pages: 125

ISBN-13: 3110326108

DOWNLOAD EBOOK

The book discusses the fate of universality and a universal set in several set theories. The book aims at a philosophical study of ontological and conceptual questions around set theory. Set theories are ontologies. They posit sets and claim that these exhibit the essential properties laid down in the set theoretical axioms. Collecting these postulated entities quantified over poses the problem of universality. Is the collection of the set theoretical entities itself a set theoretical entity? What does it mean if it is, and what does it mean if it is not? To answer these questions involves developing a theory of the universal set. We have to ask: Are there different aspects to universality in set theory, which stand in conflict to each other? May inconsistency be the price to pay to circumvent ineffability? And most importantly: How far can axiomatic ontology take us out of the problems around universality?


Set Theory with a Universal Set

Set Theory with a Universal Set

Author: T. E. Forster

Publisher:

Published: 2023

Total Pages: 0

ISBN-13: 9781383022636

DOWNLOAD EBOOK

This updated edition offers the reader an introduction to the field, which focuses on Quine's original work. It includes a revised account of the set theories of Church-Oswald and Mitchell, with permutation models and extensions that preserve power sets.


A Book of Set Theory

A Book of Set Theory

Author: Charles C Pinter

Publisher: Courier Corporation

Published: 2014-07-23

Total Pages: 259

ISBN-13: 0486497089

DOWNLOAD EBOOK

"This accessible approach to set theory for upper-level undergraduates poses rigorous but simple arguments. Each definition is accompanied by commentary that motivates and explains new concepts. A historical introduction is followed by discussions of classes and sets, functions, natural and cardinal numbers, the arithmetic of ordinal numbers, and related topics. 1971 edition with new material by the author"--


An Invitation to General Algebra and Universal Constructions

An Invitation to General Algebra and Universal Constructions

Author: George M. Bergman

Publisher: Springer

Published: 2015-02-05

Total Pages: 574

ISBN-13: 3319114786

DOWNLOAD EBOOK

Rich in examples and intuitive discussions, this book presents General Algebra using the unifying viewpoint of categories and functors. Starting with a survey, in non-category-theoretic terms, of many familiar and not-so-familiar constructions in algebra (plus two from topology for perspective), the reader is guided to an understanding and appreciation of the general concepts and tools unifying these constructions. Topics include: set theory, lattices, category theory, the formulation of universal constructions in category-theoretic terms, varieties of algebras, and adjunctions. A large number of exercises, from the routine to the challenging, interspersed through the text, develop the reader's grasp of the material, exhibit applications of the general theory to diverse areas of algebra, and in some cases point to outstanding open questions. Graduate students and researchers wishing to gain fluency in important mathematical constructions will welcome this carefully motivated book.


Sets for Mathematics

Sets for Mathematics

Author: F. William Lawvere

Publisher: Cambridge University Press

Published: 2003-01-27

Total Pages: 280

ISBN-13: 9780521010603

DOWNLOAD EBOOK

In this book, first published in 2003, categorical algebra is used to build a foundation for the study of geometry, analysis, and algebra.


Fundamentals of Set and Number Theory

Fundamentals of Set and Number Theory

Author: Valeriy K. Zakharov

Publisher: Walter de Gruyter GmbH & Co KG

Published: 2018-02-05

Total Pages: 448

ISBN-13: 3110550946

DOWNLOAD EBOOK

This comprehensive two-volume work is devoted to the most general beginnings of mathematics. It goes back to Hausdorff’s classic Set Theory (2nd ed., 1927), where set theory and the theory of functions were expounded as the fundamental parts of mathematics in such a way that there was no need for references to other sources. Along the lines of Hausdorff’s initial work (1st ed., 1914), measure and integration theory is also included here as the third fundamental part of contemporary mathematics.The material about sets and numbers is placed in Volume 1 and the material about functions and measures is placed in Volume 2. Contents Fundamentals of the theory of classes, sets, and numbers Characterization of all natural models of Neumann – Bernays – Godel and Zermelo – Fraenkel set theories Local theory of sets as a foundation for category theory and its connection with the Zermelo – Fraenkel set theory Compactness theorem for generalized second-order language


ROUGH NEUTROSOPHIC RELATION ON TWO UNIVERSAL SETS

ROUGH NEUTROSOPHIC RELATION ON TWO UNIVERSAL SETS

Author: I. AROCKIARANI

Publisher: Infinite Study

Published:

Total Pages: 14

ISBN-13:

DOWNLOAD EBOOK

In this paper, we define the rough neutrosophic relation of two universe sets and study the algebraic properties of two rough neutrosophic relations that are interesting in the theory of rough sets. Finally, we present the similarity rough neutrosophic relation with an example.


Classical Descriptive Set Theory

Classical Descriptive Set Theory

Author: Alexander Kechris

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 419

ISBN-13: 1461241901

DOWNLOAD EBOOK

Descriptive set theory has been one of the main areas of research in set theory for almost a century. This text presents a largely balanced approach to the subject, which combines many elements of the different traditions. It includes a wide variety of examples, more than 400 exercises, and applications, in order to illustrate the general concepts and results of the theory.


A Course in Universal Algebra

A Course in Universal Algebra

Author: S. Burris

Publisher: Springer

Published: 2011-10-21

Total Pages: 276

ISBN-13: 9781461381327

DOWNLOAD EBOOK

Universal algebra has enjoyed a particularly explosive growth in the last twenty years, and a student entering the subject now will find a bewildering amount of material to digest. This text is not intended to be encyclopedic; rather, a few themes central to universal algebra have been developed sufficiently to bring the reader to the brink of current research. The choice of topics most certainly reflects the authors' interests. Chapter I contains a brief but substantial introduction to lattices, and to the close connection between complete lattices and closure operators. In particular, everything necessary for the subsequent study of congruence lattices is included. Chapter II develops the most general and fundamental notions of uni versal algebra-these include the results that apply to all types of algebras, such as the homomorphism and isomorphism theorems. Free algebras are discussed in great detail-we use them to derive the existence of simple algebras, the rules of equational logic, and the important Mal'cev conditions. We introduce the notion of classifying a variety by properties of (the lattices of) congruences on members of the variety. Also, the center of an algebra is defined and used to characterize modules (up to polynomial equivalence). In Chapter III we show how neatly two famous results-the refutation of Euler's conjecture on orthogonal Latin squares and Kleene's character ization of languages accepted by finite automata-can be presented using universal algebra. We predict that such "applied universal algebra" will become much more prominent.