Understanding the Discrete Element Method

Understanding the Discrete Element Method

Author: Hans-Georg Matuttis

Publisher: John Wiley & Sons

Published: 2014-06-23

Total Pages: 484

ISBN-13: 111856720X

DOWNLOAD EBOOK

Gives readers a more thorough understanding of DEM and equips researchers for independent work and an ability to judge methods related to simulation of polygonal particles Introduces DEM from the fundamental concepts (theoretical mechanics and solidstate physics), with 2D and 3D simulation methods for polygonal particles Provides the fundamentals of coding discrete element method (DEM) requiring little advance knowledge of granular matter or numerical simulation Highlights the numerical tricks and pitfalls that are usually only realized after years of experience, with relevant simple experiments as applications Presents a logical approach starting withthe mechanical and physical bases,followed by a description of the techniques and finally their applications Written by a key author presenting ideas on how to model the dynamics of angular particles using polygons and polyhedral Accompanying website includes MATLAB-Programs providing the simulation code for two-dimensional polygons Recommended for researchers and graduate students who deal with particle models in areas such as fluid dynamics, multi-body engineering, finite-element methods, the geosciences, and multi-scale physics.


Discrete Element Methods

Discrete Element Methods

Author: Benjamin K. Cook

Publisher:

Published: 2002

Total Pages: 448

ISBN-13:

DOWNLOAD EBOOK

Proceedings of the Third International Conference on Discrete Element Methods, held in Santa Fe, New Mexico on September 23-25, 2002. This Geotechnical Special Publication contains 72 technical papers on discrete element methods (DEM), a suite of numerical techniques developed to model granular materials, rock, and other discontinua at the grain scale. Topics include: DEM formulation and implementation approaches, coupled methods, experimental validation, and techniques, including three-dimensional particle representations, efficient contact detection algorithms, particle packing schemes, and code design. Coupled methods include approaches to linking solid continuum and fluid models with DEM to simulate multiscale and multiphase phenomena. Applications include fundamental investigations of granular mechanics; micromechanical studies of powder, soil, and rock behavior; and large-scale modeling of geotechnical, material processing, mining, and petroleum engineering problems.


The Combined Finite-Discrete Element Method

The Combined Finite-Discrete Element Method

Author: Antonio A. Munjiza

Publisher: John Wiley & Sons

Published: 2004-04-21

Total Pages: 348

ISBN-13: 0470020172

DOWNLOAD EBOOK

The combined finite discrete element method is a relatively new computational tool aimed at problems involving static and / or dynamic behaviour of systems involving a large number of solid deformable bodies. Such problems include fragmentation using explosives (e.g rock blasting), impacts, demolition (collapsing buildings), blast loads, digging and loading processes, and powder technology. The combined finite-discrete element method - a natural extension of both discrete and finite element methods - allows researchers to model problems involving the deformability of either one solid body, a large number of bodies, or a solid body which fragments (e.g. in rock blasting applications a more or less intact rock mass is transformed into a pile of solid rock fragments of different sizes, which interact with each other). The topic is gaining in importance, and is at the forefront of some of the current efforts in computational modeling of the failure of solids. * Accompanying source codes plus input and output files available on the Internet * Important applications such as mining engineering, rock blasting and petroleum engineering * Includes practical examples of applications areas Essential reading for postgraduates, researchers and software engineers working in mechanical engineering.


Engineering Applications of Discrete Element Method

Engineering Applications of Discrete Element Method

Author: Xuewen Wang

Publisher: Springer Nature

Published: 2020-09-10

Total Pages: 186

ISBN-13: 9811579776

DOWNLOAD EBOOK

This book introduces the engineering application of the discrete element method (DEM), especially the simulation analysis of the typical equipment (scraper conveyor, coal silos, subsoiler) in the coal and agricultural machinery. In this book, the DEM is applied to build rigid and loose coupling model, and the kinematic effect of the bulk materials, the mechanical effect of the interaction between the bulk materials, and the mechanical equipment in the operation process of the relevant equipment are studied. On this basis, the optimization design strategy of the relevant structure is proposed. This book effectively promotes the application of DEM in engineering, analyzes the operation state, failure mechanism, and operation effect of related equipment in operation, and provides theoretical basis for the optimal design of equipment. The book is intended for undergraduate and graduate students who are interested in mechanical engineering, researchers investigating coal and agricultural machinery, and engineers working on designing related equipments.


Particulate Discrete Element Modelling

Particulate Discrete Element Modelling

Author: Catherine O'Sullivan

Publisher: CRC Press

Published: 2011-04-06

Total Pages: 574

ISBN-13: 1482266490

DOWNLOAD EBOOK

The first single work on DEM providing the information to get started with this powerful numerical modelling approach. Provides the basic details of the numerical method and the approaches used to interpret the results of DEM simulations. It will be of use to professionals, researchers and higher level students, with a theoretical overview of DEM as well as practical guidance.Selected Contents: 1.Introduction 2.Use of DEM in Geomechanics 3.Calculation of Contact Forces 4.Particle Motion 5.Particle Types 6.Boundary Conditions 7.Initial Geometry and Specimen Generation 8.Time Integration and Discrete Element Modelling 9.DEM Interpretation: A Continuum Perspective 10.Postprocessing: Graphical Interpretation of DEM Simulations 11.Basic Statisti


Computational Modeling of Masonry Structures Using the Discrete Element Method

Computational Modeling of Masonry Structures Using the Discrete Element Method

Author: Sarhosis, Vasilis

Publisher: IGI Global

Published: 2016-06-09

Total Pages: 526

ISBN-13: 1522502327

DOWNLOAD EBOOK

The Discrete Element Method (DEM) has emerged as a solution to predicting load capacities of masonry structures. As one of many numerical methods and computational solutions being applied to evaluate masonry structures, further research on DEM tools and methodologies is essential for further advancement. Computational Modeling of Masonry Structures Using the Discrete Element Method explores the latest digital solutions for the analysis and modeling of brick, stone, concrete, granite, limestone, and glass block structures. Focusing on critical research on mathematical and computational methods for masonry analysis, this publication is a pivotal reference source for scholars, engineers, consultants, and graduate-level engineering students.


Understanding the Discrete Element Method

Understanding the Discrete Element Method

Author: Hans-Georg Matuttis

Publisher: John Wiley & Sons

Published: 2014-05-12

Total Pages: 484

ISBN-13: 1118567285

DOWNLOAD EBOOK

Gives readers a more thorough understanding of DEM and equips researchers for independent work and an ability to judge methods related to simulation of polygonal particles Introduces DEM from the fundamental concepts (theoretical mechanics and solidstate physics), with 2D and 3D simulation methods for polygonal particles Provides the fundamentals of coding discrete element method (DEM) requiring little advance knowledge of granular matter or numerical simulation Highlights the numerical tricks and pitfalls that are usually only realized after years of experience, with relevant simple experiments as applications Presents a logical approach starting withthe mechanical and physical bases,followed by a description of the techniques and finally their applications Written by a key author presenting ideas on how to model the dynamics of angular particles using polygons and polyhedral Accompanying website includes MATLAB-Programs providing the simulation code for two-dimensional polygons Recommended for researchers and graduate students who deal with particle models in areas such as fluid dynamics, multi-body engineering, finite-element methods, the geosciences, and multi-scale physics.


Discrete-element Modeling of Granular Materials

Discrete-element Modeling of Granular Materials

Author: Farhang Radjaï

Publisher: Wiley-ISTE

Published: 2011-05-03

Total Pages: 0

ISBN-13: 9781848212602

DOWNLOAD EBOOK

This book brings together in a single volume various methods and skills for particle-scale or discrete-element numerical simulation of granular media. It covers a broad range of topics from basic concepts and methods towards more advanced aspects and technical details applicable to the current research on granular materials. Discrete-element simulations of granular materials are based on four basic models (molecular dynamics, contact dynamics, quasi-static and event driven) dealing with frictional contact interactions and integration schemes for the equations of dynamics. These models are presented in the first chapters of the book, followed by various methods for sample preparation and monitoring of boundary conditions, as well as dimensionless control parameters. Granular materials encountered in real life involve a variety of compositions (particle shapes and size distributions) and interactions (cohesive, hydrodynamic, thermal) that have been extensively covered by several chapters. The book ends with two applications in the field of geo-materials.


Coupled CFD-DEM Modeling

Coupled CFD-DEM Modeling

Author: Hamid Reza Norouzi

Publisher: John Wiley & Sons

Published: 2016-10-17

Total Pages: 436

ISBN-13: 1119005132

DOWNLOAD EBOOK

Discusses the CFD-DEM method of modeling which combines both the Discrete Element Method and Computational Fluid Dynamics to simulate fluid-particle interactions. Deals with both theoretical and practical concepts of CFD-DEM, its numerical implementation accompanied by a hands-on numerical code in FORTRAN Gives examples of industrial applications


Discrete Element Method to Model 3D Continuous Materials

Discrete Element Method to Model 3D Continuous Materials

Author: Mohamed Jebahi

Publisher: John Wiley & Sons

Published: 2015-02-26

Total Pages: 198

ISBN-13: 111910291X

DOWNLOAD EBOOK

Complex behavior models (plasticity, cracks, visco elascticity) face some theoretical difficulties for the determination of the behavior law at the continuous scale. When homogenization fails to give the right behavior law, a solution is to simulate the material at a meso scale in order to simulate directly a set of discrete properties that are responsible of the macroscopic behavior. The discrete element model has been developed for granular material. The proposed set shows how this method is capable to solve the problem of complex behavior that are linked to discrete meso scale effects.