ULF Waves’ Interaction with Cold and Thermal Particles in the Inner Magnetosphere

ULF Waves’ Interaction with Cold and Thermal Particles in the Inner Magnetosphere

Author: Jie Ren

Publisher: Springer

Published: 2019-08-14

Total Pages: 121

ISBN-13: 9813293780

DOWNLOAD EBOOK

This thesis focuses on ULF (Ultra-low-frequency) waves' interaction with plasmasphere particles and ring current ions in the inner magnetosphere. It first reports and reveals mutual effect between ULF waves and plasmasphere using Van Allen Probes data. The differences and similarities of different ring current ions interacting with ULF waves are extensively explored using Cluster data, which provides a potential explanation for O+-dominated ring current during the magnetic storms. Furthermore, this thesis finds a method to study the phase relationship between ULF waves and drift-bounce resonant particles, and proposes that the phase relationship can be used to diagnose the parallel structure of standing wave electric field and energy transfer directions between waves and particles. The findings in this thesis can significantly promote our understanding of ULF waves' role in the dynamics of inner magnetosphere.


ULF Waves' Interaction with Cold and Thermal Particles in the Inner Magnetosphere

ULF Waves' Interaction with Cold and Thermal Particles in the Inner Magnetosphere

Author: Jie Ren

Publisher:

Published: 2019

Total Pages: 121

ISBN-13: 9789813293793

DOWNLOAD EBOOK

This thesis focuses on ULF (Ultra-low-frequency) waves' interaction with plasmasphere particles and ring current ions in the inner magnetosphere. It first reports and reveals mutual effect between ULF waves and plasmasphere using Van Allen Probes data. The differences and similarities of different ring current ions interacting with ULF waves are extensively explored using Cluster data, which provides a potential explanation for O+-dominated ring current during the magnetic storms. Furthermore, this thesis finds a method to study the phase relationship between ULF waves and drift-bounce resonant particles, and proposes that the phase relationship can be used to diagnose the parallel structure of standing wave electric field and energy transfer directions between waves and particles. The findings in this thesis can significantly promote our understanding of ULF waves' role in the dynamics of inner magnetosphere.


Dayside Magnetosphere Interactions

Dayside Magnetosphere Interactions

Author: Qiugang Zong

Publisher: John Wiley & Sons

Published: 2020-03-13

Total Pages: 324

ISBN-13: 1119509629

DOWNLOAD EBOOK

Exploring the processes and phenomena of Earth's dayside magnetosphere Energy and momentum transfer, initially taking place at the dayside magnetopause, is responsible for a variety of phenomenon that we can measure on the ground. Data obtained from observations of Earth’s dayside magnetosphere increases our knowledge of the processes by which solar wind mass, momentum, and energy enter the magnetosphere. Dayside Magnetosphere Interactions outlines the physics and processes of dayside magnetospheric phenomena, the role of solar wind in generating ultra-low frequency waves, and solar wind-magnetosphere-ionosphere coupling. Volume highlights include: Phenomena across different temporal and spatial scales Discussions on dayside aurora, plume dynamics, and related dayside reconnection Results from spacecraft observations, ground-based observations, and simulations Discoveries from the Magnetospheric Multiscale Mission and Van Allen Probes era Exploration of foreshock, bow shock, magnetosheath, magnetopause, and cusps Examination of similar processes occurring around other planets The American Geophysical Union promotes discovery in Earth and space science for the benefit of humanity. Its publications disseminate scientific knowledge and provide resources for researchers, students, and professionals. Find out more about this book from this Q&A with the editors


Low-Frequency Waves in Space Plasmas

Low-Frequency Waves in Space Plasmas

Author: Andreas Keiling

Publisher: John Wiley & Sons

Published: 2016-02-10

Total Pages: 528

ISBN-13: 1119055024

DOWNLOAD EBOOK

Low-frequency waves in space plasmas have been studied for several decades, and our knowledge gain has been incremental with several paradigm-changing leaps forward. In our solar system, such waves occur in the ionospheres and magnetospheres of planets, and around our Moon. They occur in the solar wind, and more recently, they have been confirmed in the Sun’s atmosphere as well. The goal of wave research is to understand their generation, their propagation, and their interaction with the surrounding plasma. Low-frequency Waves in Space Plasmas presents a concise and authoritative up-to-date look on where wave research stands: What have we learned in the last decade? What are unanswered questions? While in the past waves in different astrophysical plasmas have been largely treated in separate books, the unique feature of this monograph is that it covers waves in many plasma regions, including: Waves in geospace, including ionosphere and magnetosphere Waves in planetary magnetospheres Waves at the Moon Waves in the solar wind Waves in the solar atmosphere Because of the breadth of topics covered, this volume should appeal to a broad community of space scientists and students, and it should also be of interest to astronomers/astrophysicists who are studying space plasmas beyond our Solar System.


Cold-Ion Populations and Cold-Electron Populations in the Earth’s Magnetosphere and Their Impact on the System, 2nd edition

Cold-Ion Populations and Cold-Electron Populations in the Earth’s Magnetosphere and Their Impact on the System, 2nd edition

Author: Joseph E. Borovsky

Publisher: Frontiers Media SA

Published: 2023-05-11

Total Pages: 223

ISBN-13: 2832522491

DOWNLOAD EBOOK

Cold-ion populations and cold-electron populations are extremely difficult to measure in the Earth’s magnetosphere, and their properties, evolutions, and controlling factors are poorly understood. They are sometimes referred to as the “hidden populations”. But they are known to have multiple impacts on the behavior of the global magnetospheric system. These impacts include (a) the reduction of the dayside reconnection rate and consequently the reduction of solar-wind/magnetosphere coupling, (b) alteration of the growth rate and saturation amplitudes of plasma waves resulting in alterations of the energization rates of the radiation belts, (c) changes in plasma-wave properties resulting in changes in the loss rates of the ring current and radiation belts, (d) changes in the mass density of the magnetosphere resulting in changes in the radial diffusion of the radiation belts, (e) spatial and temporal structuring of the aurora, (f) altering magnetotail reconnection, (g) changing spacecraft charging, and (h) acting as sources for warm and hot magnetospheric populations. A recent workshop on the cold-particle populations of the magnetosphere inspired new work on the outstanding problems caused by a lack of understanding of those cold populations. This Research Topic will collect reports of that new work and will stimulate the formation of author teams to write review articles on what is known and what needs to be known. Commentaries assessing the present situation and guiding the research field into the future will be solicited from the community. Methods articles describing new measurement techniques and new spaceflight mission concepts will be welcomed.


The Sun to the Earth â¬" and Beyond

The Sun to the Earth â¬

Author: National Research Council

Publisher: National Academies Press

Published: 2003-12-17

Total Pages: 262

ISBN-13: 0309089727

DOWNLOAD EBOOK

This volume, The Sun to the Earth-and Beyond: Panel Reports, is a compilation of the reports from five National Research Council (NRC) panels convened as part of a survey in solar and space physics for the period 2003-2013. The NRC's Space Studies Board and its Committee on Solar and Space Physics organized the study. Overall direction for the survey was provided by the Solar and Space Physics Survey Committee, whose report, The Sun to the Earth-and Beyond: A Decadal Research Strategy in Solar and Space Physics, was delivered to the study sponsors in prepublication format in August 2002. The final version of that report was published in June 2003. The panel reports provide both a detailed rationale for the survey committee's recommendations and an expansive view of the numerous opportunities that exist for a robust program of exploration in solar and space physics.


Space Physics and Aeronomy, Magnetospheres in the Solar System

Space Physics and Aeronomy, Magnetospheres in the Solar System

Author: Romain Maggiolo

Publisher: John Wiley & Sons

Published: 2021-04-14

Total Pages: 800

ISBN-13: 1119829984

DOWNLOAD EBOOK

Überblick über den aktuellen Wissensstand und künftige Forschungsrichtungen in der Magnetosphärenphysik In den sechs Jahrzehnten seit der Einführung des Begriffs ?Magnetosphäre? sind über den magnetisierten Raum, der jeden Körper in unserem Sonnensystem umgibt, viele Theorien entstanden und viele Erkenntnisse gewonnen worden. Jede Magnetosphäre ist einzigartig und verhält sich doch entsprechend den universellen physikalischen Vorgängen. Der Band ?Magnetospheres in the Solar System? enthält Beiträge von Experten für Experimentalphysik, theoretische Physik und numerische Modellierung, die einen Überblick über verschiedene Magnetosphären vermitteln, von der winzigen Magnetosphäre des Merkur bis zu den gewaltigen planetarischen Magnetosphären von Jupiter und Saturn. Das Werk bietet insbesondere: * Einen kompakten Überblick über die Geschichte der Magnetosphäre, ihre Grundsätze und Gleichungen * Eine Zusammenfassung der grundlegenden Prozesse in der Magnetospährenphysik * Instrumente und Techniken zur Untersuchung von Prozessen in der Magnetosphäre * Eine besondere Schwerpunktsetzung auf die Magnetosphäre der Erde und ihre Dynamik * Eine Darstellung der planetaren Magnetfelder und Magnetosphären im gesamten Sonnensystem * Eine Definition der künftigen Forschungsrichtungen in der Magnetosphärenphysik Die Amerikanische Geophysikalische Vereinigung fördert die wissenschaftliche Erforschung der Erde und des Weltraums zum Wohle der Menschheit. In ihren Publikationen werden wissenschaftliche Erkenntnisse veröffentlicht, die Forschern, Studenten und Fachkräften zur Verfügung stehen.


Dynamics of the Earth's Radiation Belts and Inner Magnetosphere

Dynamics of the Earth's Radiation Belts and Inner Magnetosphere

Author: Danny Summers

Publisher: John Wiley & Sons

Published: 2013-05-09

Total Pages: 782

ISBN-13: 1118704371

DOWNLOAD EBOOK

Published by the American Geophysical Union as part of the Geophysical Monograph Series, Volume 199. Dynamics of the Earth's Radiation Belts and Inner Magnetosphere draws together current knowledge of the radiation belts prior to the launch of Radiation Belt Storm Probes (RPSP) and other imminent space missions, making this volume timely and unique. The volume will serve as a useful benchmark at this exciting and pivotal period in radiation belt research in advance of the new discoveries that the RPSP mission will surely bring. Highlights include the following: a review of the current state of the art of radiation belt science; a complete and up-to-date account of the wave-particle interactions that control the dynamical acceleration and loss processes of particles in the Earth's radiation belts and inner magnetosphere; a discussion emphasizing the importance of the cross-energy coupling of the particle populations of the radiation belts, ring current, and plasmasphere in controlling the dynamics of the inner magnetosphere; an outline of the design and operation of future satellite missions whose objectives are to discover the dominant physical processes that control the dynamics of the Earth's radiation belts and to advance our level of understanding of radiation belt dynamics ideally to the point of predictability; and an examination of the current state of knowledge of Earth's radiation belts from past and current spacecraft missions to the inner magnetosphere. Dynamics of the Earth's Radiation Belts and Inner Magnetosphere will be a useful reference work for the specialist researcher, the student, and the general reader. In addition, the volume could be used as a supplementary text in any graduate-level course in space physics in which radiation belt physics is featured.


Kinetic Theory of the Inner Magnetospheric Plasma

Kinetic Theory of the Inner Magnetospheric Plasma

Author: George V. Khazanov

Publisher: Springer Science & Business Media

Published: 2010-10-01

Total Pages: 593

ISBN-13: 1441967974

DOWNLOAD EBOOK

The inner magnetosphere plasma is a very unique composition of different plasma particles and waves. It covers a huge energy plasma range with spatial and time variations of many orders of magnitude. In such a situation, the kinetic approach is the key element, and the starting point of the theoretical description of this plasma phenomena which requires a dedicated book to this particular area of research.


The Van Allen Probes Mission

The Van Allen Probes Mission

Author: Nicola Fox

Publisher: Springer

Published: 2016-09-24

Total Pages: 0

ISBN-13: 9781489978707

DOWNLOAD EBOOK

Documents the science, the mission, the spacecraft and the instrumentation on a unique NASA mission to study the Earth’s dynamic, dangerous and fascinating Van Allen radiation belts that surround the planet This collection of articles provides broad and detailed information about NASA’s Van Allen Probes (formerly known as the Radiation Belt Storm Probes) twin-spacecraft Earth-orbiting mission. The mission has the objective of achieving predictive understanding of the dynamic, intense, energetic, dangerous, and presently unpredictable belts of energetic particles that are magnetically trapped in Earth’s space environment above the atmosphere. It documents the science of the radiation belts and the societal benefits of achieving predictive understanding. Detailed information is provided about the Van Allen Probes mission design, the spacecraft, the science investigations, and the onboard instrumentation that must all work together to make unprecedented measurements within a most unforgiving environment, the core of Earth’s most intense radiation regions. This volume is aimed at graduate students and researchers active in space science, solar-terrestrial interactions and studies of the upper atmosphere. Originally published in Space Science Reviews, Vol. 179/1-4, 2013.