Turbulent Jets

Turbulent Jets

Author: N. Rajaratnam

Publisher: Elsevier

Published: 1976-01-01

Total Pages: 315

ISBN-13: 0080869963

DOWNLOAD EBOOK

Turbulent Jets


The Theory of Turbulent Jets

The Theory of Turbulent Jets

Author: Genrikh Naumovich Abramovich

Publisher: Mit Press

Published: 1963

Total Pages: 671

ISBN-13: 9780262010085

DOWNLOAD EBOOK

The author's first monograph on turbulent jets, in 1936, dealt solely with a free submerged jet. Since that time, the theory of the turbulent jet has been developed in many published works both in the USSR and abroad: it has been enriched with a large amount of experimental material and has been applied in many new fields of engineering. In the last 10 years very substantial progress has been made, and it has now become possible to go beyond the free submerged jet and to solve the problem of a jet in a stream of fluid, to take into account the interaction between the jet and solid walls, to ascertain the relationship between the contour of the jet and the ratio of its density to the density of the surrounding medium, and to establish the characteristic features of a supersonic jet. This monograph contains the results of further research by the author and his colleagues, as well as a critical reappraisal of the more important theoretical and experimental data published by other investigators. The first section deals with the theory of a turbulent jet of incompressible fluid. It gives a systematic analysis of numerous experimental data on velocity profiles, temperature, and the impurity concentration, as well as the outlines of the turbulent mixing lone. The second section sets forth the theory of turbulent gas jets, including strongly preheated and supersonic jets. The theory of free turbulence in a gas, suitable in principle for any degree of compressibility, is revised, and the equations are derived for motion and heat exchange in the boundary layer of a jet at very high temperature. The third section solves several problems of the spreading of jets in finite and semifinite space, and the fourth section describes various applications of the theory of jets, many of which are reported for the first time or have been significantly revised.


Turbulent Jets and Plumes

Turbulent Jets and Plumes

Author: Joseph Hun-wei Lee

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 391

ISBN-13: 1461504074

DOWNLOAD EBOOK

Jets and plumes are shear flows produced by momentum and buoyancy forces. Examples include smokestack emissions, fires and volcano eruptions, deep sea vents, thermals, sewage discharges, thermal effluents from power stations, and ocean dumping of sludge. Knowledge of turbulent mixing by jets and plumes is important for environmental control, impact and risk assessment. Turbulent Jets and Plumes introduces the fundamental concepts and develops a Lagrangian approach to model these shear flows. This theme persists throughout the text, starting from simple cases and building towards the practically important case of a turbulent buoyant jet in a density-stratified crossflow. Basic ideas are illustrated by ample use of flow visualization using the laser-induced fluorescence technique. The text includes many illustrative worked examples, comparisons of model predictions with laboratory and field data, and classroom tested problems. An interactive PC-based virtual-reality modelling software (VISJET) is also provided. Engineering and science students, researchers and practitioners may use the book both as an introduction to the subject and as a reference in hydraulics and environmental fluid mechanics.


Acoustic Control of Turbulent Jets

Acoustic Control of Turbulent Jets

Author: A.S. Ginevsky

Publisher: Springer Science & Business Media

Published: 2012-11-02

Total Pages: 243

ISBN-13: 3540399143

DOWNLOAD EBOOK

Results of experimental research on aerodynamic and acoustic control of subsonic turbulent jets by acoustic excitation are presented. It was demonstrated that these control methods, originated by authors, not only can intensify mixing (by acoustic irradiation at low frequency), but also notably ease it (at high-frequency irradiation). This research monograph presents the updated results of the authors supplemented by other investigations conducted in USA, Germany and Great Britain. The methods for the numerical simulation of subsonic turbulent jets under acoustic excitation are described in detail, and examples are reviewed of practical applications, including reduction of turbojet engine noise and acoustic control of self-sustained oscillations in wind tunnels.


Physics of Turbulent Jet Ignition

Physics of Turbulent Jet Ignition

Author: Sayan Biswas

Publisher: Springer

Published: 2018-05-03

Total Pages: 230

ISBN-13: 3319762435

DOWNLOAD EBOOK

This book focuses on developing strategies for ultra-lean combustion of natural gas and hydrogen, and contributes to the research on extending the lean flammability limit of hydrogen and air using a hot supersonic jet. The author addresses experimental methods, data analysis techniques, and results throughout each chapter and: Explains the fundamental mechanisms behind turbulent hot jet ignition using non-dimensional analysis Explores ignition characteristics by impinging hot jet and multiple jets in relation to better controllability and lean combustion Explores how different instability modes interact with the acoustic modes of the combustion chamber. This book provides a potential answer to some of the issues that arise from lean engine operation, such as poor ignition, engine misfire, cycle-to-cycle variability, combustion instability, reduction in efficiency, and an increase in unburned hydrocarbon emissions. This thesis was submitted to and approved by Purdue University.


Recent Research Advances in the Fluid Mechanics of Turbulent Jets and Plumes

Recent Research Advances in the Fluid Mechanics of Turbulent Jets and Plumes

Author: P.A. Davies

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 513

ISBN-13: 9401109184

DOWNLOAD EBOOK

Challenging problems involvrllg jet and plume phenomena are common to many areas of fundamental and applied scientific research, and an understanding of plume and jet behaviour is essential in many geophysical and industrial contexts. For example, in the field of meteorology, where pollutant dispersal takes place by means of atmospheric jets and plumes formed either naturally under conditions of convectively-driven flow in the atmospheric boundary layer, or anthropogenically by the release of pollutants from tall chimneys. In other fields of geophysics, buoyant plumes and jets are known to play important roles in oceanic mixing processes, both at the relatively large scale (as in deep water formation by convective sinking) and at the relatively small scale (as with plume formation beneath ice leads, for example). In the industrial context, the performances of many engineering systems are determined primarily by the behaviour of buoyant plumes and jets. For example, (i) in sea outfalls, where either sewage or thermal effluents are discharged into marine and/or freshwater environments, (ii) in solar ponds, where buoyant jets are released under density interfaces, (iii) in buildings, where thermally-generated plumes affect the air quality and ventilation properties of architectural environments, (iv) in rotating machinery where fluid jet~ are used for cooling purposes, and (v) in long road and rail tunnels, where safety and ventilation prcedures rely upon an understanding of the behaviour of buoyant jets. In many other engineering and oceanographic contexts, the properties of jets and plumes are of great importance.


Survey of Literature on Flow Characteristics of a Single Turbulent Jet Impinging on a Flat Plate

Survey of Literature on Flow Characteristics of a Single Turbulent Jet Impinging on a Flat Plate

Author: James W. Gauntner

Publisher:

Published: 1970

Total Pages: 52

ISBN-13:

DOWNLOAD EBOOK

Flow characteristics of single jets impinging on flat surfaces have been studied by many investigators. The results of some of the numerous studies are summarized herein. Suggested methods for determining velocities and pressures on which to base heat-transfer correlations for use in impingement cooling design are presented.


Mixing in the Process Industries

Mixing in the Process Industries

Author: A W NIENOW

Publisher: Butterworth-Heinemann

Published: 1997-09-11

Total Pages: 429

ISBN-13: 0080536581

DOWNLOAD EBOOK

This volume is a valuable reference work for the student and the practising engineer in the chemical, pharmaceutical, minerals, food, plastics, paper and metallurgical industries. The second edition of this successful text has been thoroughly rewritten and updated. Based on the long running post-experience course produced by the University of Bradford, in association with the Institution of Chemical Engineers, it covers all aspects of mixing, from fundamentals through to design procedures in single and multi-phase systems. Experts from both industry and academia have contributed to this work giving both a theoretical practical approach. It covers dry and wet powders, single and two-phase liquids, solid/liquid and gas/liquid systems. The range of mixers available for such diverse duties is dealt with, including tumbler mixers for powders, mechanically agitated vessels, in-line continuous mixers and jet mixers. Coverage is given of the range of mixing objectives, varying from achieving product uniformity to obtaining optimum conditions for mass transfer and chemical reactions. This volume is a valuable reference work for the student and the practising engineer in the chemical, pharmaceutical, minerals, food, plastics, paper and metallurgical industries. The second edition of this successful text has been thoroughly rewritten and updated. Based on the long running post-experience course produced by the University of Bradford, in association with the Institution of Chemical Engineers, it covers all aspects of mixing, from fundamentals through to design procedures in single and multi-phase systems. Experts from both industry and academia have contributed to this work giving both a theoretical practical approach. It covers dry and wet powders, single and two-phase liquids, solid/liquid and gas/liquid systems. The range of mixers available for such diverse duties is dealt with, including tumbler mixers for powders, mechanically agitated vessels, in-line continuous mixers and jet mixers. Coverage is given of the range of mixing objectives, varying from achieving product uniformity to obtaining optimum conditions for mass transfer and chemical reactions.


A First Course in Turbulence

A First Course in Turbulence

Author: Henk Tennekes

Publisher: MIT Press

Published: 2018-04-27

Total Pages: 316

ISBN-13: 0262536307

DOWNLOAD EBOOK

This is the first book specifically designed to offer the student a smooth transitionary course between elementary fluid dynamics (which gives only last-minute attention to turbulence) and the professional literature on turbulent flow, where an advanced viewpoint is assumed. The subject of turbulence, the most forbidding in fluid dynamics, has usually proved treacherous to the beginner, caught in the whirls and eddies of its nonlinearities and statistical imponderables. This is the first book specifically designed to offer the student a smooth transitionary course between elementary fluid dynamics (which gives only last-minute attention to turbulence) and the professional literature on turbulent flow, where an advanced viewpoint is assumed. Moreover, the text has been developed for students, engineers, and scientists with different technical backgrounds and interests. Almost all flows, natural and man-made, are turbulent. Thus the subject is the concern of geophysical and environmental scientists (in dealing with atmospheric jet streams, ocean currents, and the flow of rivers, for example), of astrophysicists (in studying the photospheres of the sun and stars or mapping gaseous nebulae), and of engineers (in calculating pipe flows, jets, or wakes). Many such examples are discussed in the book. The approach taken avoids the difficulties of advanced mathematical development on the one side and the morass of experimental detail and empirical data on the other. As a result of following its midstream course, the text gives the student a physical understanding of the subject and deepens his intuitive insight into those problems that cannot now be rigorously solved. In particular, dimensional analysis is used extensively in dealing with those problems whose exact solution is mathematically elusive. Dimensional reasoning, scale arguments, and similarity rules are introduced at the beginning and are applied throughout. A discussion of Reynolds stress and the kinetic theory of gases provides the contrast needed to put mixing-length theory into proper perspective: the authors present a thorough comparison between the mixing-length models and dimensional analysis of shear flows. This is followed by an extensive treatment of vorticity dynamics, including vortex stretching and vorticity budgets. Two chapters are devoted to boundary-free shear flows and well-bounded turbulent shear flows. The examples presented include wakes, jets, shear layers, thermal plumes, atmospheric boundary layers, pipe and channel flow, and boundary layers in pressure gradients. The spatial structure of turbulent flow has been the subject of analysis in the book up to this point, at which a compact but thorough introduction to statistical methods is given. This prepares the reader to understand the stochastic and spectral structure of turbulence. The remainder of the book consists of applications of the statistical approach to the study of turbulent transport (including diffusion and mixing) and turbulent spectra.


Turbulent Flows

Turbulent Flows

Author: Jean Piquet

Publisher: Springer Science & Business Media

Published: 2001-03-26

Total Pages: 778

ISBN-13: 9783540654117

DOWNLOAD EBOOK

obtained are still severely limited to low Reynolds numbers (about only one decade better than direct numerical simulations), and the interpretation of such calculations for complex, curved geometries is still unclear. It is evident that a lot of work (and a very significant increase in available computing power) is required before such methods can be adopted in daily's engineering practice. I hope to l"Cport on all these topics in a near future. The book is divided into six chapters, each· chapter in subchapters, sections and subsections. The first part is introduced by Chapter 1 which summarizes the equations of fluid mechanies, it is developed in C~apters 2 to 4 devoted to the construction of turbulence models. What has been called "engineering methods" is considered in Chapter 2 where the Reynolds averaged equations al"C established and the closure problem studied (§1-3). A first detailed study of homogeneous turbulent flows follows (§4). It includes a review of available experimental data and their modeling. The eddy viscosity concept is analyzed in §5 with the l"Csulting ~alar-transport equation models such as the famous K-e model. Reynolds stl"Css models (Chapter 4) require a preliminary consideration of two-point turbulence concepts which are developed in Chapter 3 devoted to homogeneous turbulence. We review the two-point moments of velocity fields and their spectral transforms (§ 1), their general dynamics (§2) with the particular case of homogeneous, isotropie turbulence (§3) whel"C the so-called Kolmogorov's assumptions are discussed at length.