This book, cohesively written by an expert author with supreme breadth and depth of perspective on polyurethanes, provides a comprehensive overview of all aspects of the science and technology on one of the most commonly produced plastics. Covers the applications, manufacture, and markets for polyurethanes, and discusses analytical methods, reaction mechanisms, morphology, and synthetic routes Provides an up-to-date view of the current markets and trend analysis based on patent activity and updates chapters to include new research Includes two new chapters on PU recycling and PU hybrids, covering the opportunities and challenges in both
This comprehensive textbook describes the synthesis, characterization and technical and engineering applications of polymers. Offering a broad and balanced introduction to the basic concepts of macromolecular chemistry and to the synthesis and physical chemistry of polymers, it is the ideal text for graduate students and advanced Masters students starting out in polymer science. Building on the basic principles of organic chemistry and thermodynamics, it provides an easily understandable and highly accessible introduction to the topic. Step by step, readers will obtain a detailed and well-founded understanding of this vibrant and increasingly important subject area at the intersection between chemistry, physics, engineering and the life sciences.Following an approach different from many other textbooks in the field, the authors, with their varying backgrounds (both from academia and industry), offer a new perspective. Starting with a clear and didactic introduction, the book discusses basic terms and sizes and shapes of polymers and macromolecules. There then follow chapters dedicated to polymers in solutions, molar mass determination, and polymers in the solid state, incl. (partially) crystalline or amorphous polymers as well as their application as engineering materials. Based on this information, the authors explain the most important polymerization methods and techniques. Often neglected in other textbooks, there are chapters on technical polymers, functional polymers, elastomers and liquid crystalline polymers, as well as polymers and the environment. An overview of current trends serves to generate further interest in present and future developments in the field.This book is the English translation of the successful German textbook "Polymere", which was awarded the Chemical Industry in Germany’s 2015 literature Prize (“Literaturpreis des Fonds der Chemischen Industrie”) for its innovative, novel approach, and its good accessibility and readability, while at the same time providing comprehensive coverage of the field of polymer science.
This book covers all the proposed fuel cell systems including PEMFC, SOFC, PAFC, MCFC, regenerative fuel cells, direct alcohol fuel cells, and small fuel cells to replace batteries.
The search for better strategies to preserve foods with minimal changes during processing has been of great interest in recent decades. Traditionally, edible films and coatings have been used as a partial barrier to moisture, oxygen, and carbon dioxide through selective permeability to gases, as well as improving mechanical handling properties. The advances in this area have been breathtaking, and in fact their implementation in the industry is already a reality. Even so, there are still new developments in various fields and from various perspectives worth reporting. Edible Films and Coatings: Fundamentals and Applications discusses the newest generation of edible films and coatings that are being especially designed to allow the incorporation and/or controlled release of specific additives by means of nanoencapsulation, layer-by-layer assembly, and other promising technologies. Covering the latest novelties in research conducted in the field of edible packaging, it considers state-of-the-art innovations in coatings and films; novel applications, particularly in the design of gourmet foods; new advances in the incorporation of bioactive compounds; and potential applications in agronomy, an as yet little explored area, which could provide considerable advances in the preservation and quality of foods in the field.
This Handbook discusses the recent advances in biodegradation technologies and highlights emerging sustainable materials, including environmentally friendly nano-based materials for replacing plastics. It is useful to scientists, engineers, biologists, medical doctors and provides alternative eco-friendly materials to replace the currently used ones with harmful impact on the environment and life. The chapters present different types of alternative materials in diverse areas, such as food packaging materials, materials for construction and agricultural materials. The principles and types of biodegration technologies are described in depth.
Polymer Science and Innovative Applications: Materials, Techniques, and Future Developments introduces the science of innovative polymers and composites, their analysis via experimental techniques and simulation, and their utilization in a variety of application areas. This approach helps to unlock the potential of new materials for product design and other uses. The book also examines the role that these applications play in the human world, from pollution and health impacts, to their potential to make a positive contribution in areas including environmental remediation, medicine and healthcare, and renewable energy. Advantages, disadvantages, possibilities, and challenges relating to the utilization of polymers in human society are included. - Presents the latest advanced applications of polymers and their composites and identifies key areas for future development - Introduces the simulation methods and experimental techniques involved in the modification of polymer properties, supported by clear and detailed images and diagrams - Supports an interdisciplinary approach, enabling readers across different fields to harness the power of new materials for innovative applications
Innovative textile materials are used for numerous applications. Understanding the properties of such materials is imperative to ensure proper utilization. Emergent Research on Polymeric and Composite Materials is an essential reference work featuring the latest scholarly research on the synthesis, characterizations, and physico-chemical properties of textile materials. Including coverage on a range of topics such as nanomaterials, ceramics, and clays, this book is ideally designed for researchers, academicians, industries, and students seeking current research on emerging developments and applications of polymeric and composite materials.
Graphite, Graphene, and Their Polymer Nanocomposites presents a compilation of emerging research trends in graphene-based polymer nanocomposites (GPNC). International researchers from several disciplines share their expertise about graphene, its properties, and the behavior of graphene-based composites. Possibly the first published monograph of its kind, this book provides a comprehensive snapshot of graphite, graphene, and their PNCs, including the underlying physics and chemistry, and associated applications. Beginning with an introduction to natural and synthetic graphite, the precursors to graphene, the text describes their properties, characterization techniques, and prominent commercial applications. The focus then moves to graphene and its unique features, and techniques for its characterization. The chapters cover advances in electrochemical exfoliation of graphite, as well as exfoliation routes to produce graphene and graphite nanoplatelets for polymer composites. They also explore commercial use of graphene-based materials, such as emerging clean energy and pulse laser applications, and use as nanofillers in epoxy-based composites. The authors provide an overview of nanofillers and address two methods for GPNC preparation as well as specialized properties of GPNC. With its multidisciplinary approach, this book provides a broader scientific and engineering perspective necessary for meaningful advancements to take place.
The study of radiation effects has developed as a major field of materials science from the beginning, approximately 70 years ago. Its rapid development has been driven by two strong influences. The properties of the crystal defects and the materials containing them may then be studied. The types of radiation that can alter structural materials consist of neutrons, ions, electrons, gamma rays or other electromagnetic waves with different wavelengths. All of these forms of radiation have the capability to displace atoms/molecules from their lattice sites, which is the fundamental process that drives the changes in all materials. The effect of irradiation on materials is fixed in the initial event in which an energetic projectile strikes a target. The book is distributed in four sections: Ionic Materials; Biomaterials; Polymeric Materials and Metallic Materials.
Recent developments in multifunctional and nanoreinforced polymers have provided the opportunity to produce high barrier, active and intelligent food packaging which can help ensure, or even enhance, the quality and safety of packaged foods. Multifunctional and nanoreinforced polymers for food packaging provides a comprehensive review of novel polymers and polymer nanocomposites for use in food packaging.After an introductory chapter, Part one discusses nanofillers for plastics in food packaging. Chapters explore the use of passive and active nanoclays and hidrotalcites, cellulose nanofillers and electrospun nanofibers and nanocapsules. Part two investigates high barrier plastics for food packaging. Chapters assess the transport and high barrier properties of food packaging polymers such as ethylene-norbornene copolymers and advanced single-site polyolefins, nylon-MXD6 resins and ethylene-vinyl alcohol copolymers before going on to explore recent advances in various plastic packaging technologies such as modified atmosphere packaging (MAP), nanoscale inorganic coatings and functional barriers against migration. Part three reviews active and bioactive plastics in food packaging. Chapters investigate silver-based antimicrobial polymers, the incorporation of antimicrobial/antioxidant natural extracts into polymeric films, and biaoctive food packaging strategies. Part four examines nanotechnology in sustainable plastics with chapters examining the food packaging applications of polylactic acid (PLA) nanocomposites, polyhydroxyalkanoates (PHAs), starch-based polymers, chitosan and carragenan polysaccharides and protein-based resins for packaging gluten (WG)-based materials. The final chapter presents the safety and regulatory aspects of plastics as food packaging materials.With its distinguished editor and international team of expert contributors Multifunctional and nanoreinforced polymers for food packaging proves a valuable resource for researchers in packaging in the food industry and polymer scientists interested in multifunctional and nanoreinforced materials. - Provides a comprehensive review of novel polymers and polymer nanocomposites for use in food packaging - Discusses nanofillers for plastics in food packaging including the use of passive and active nanoclays and hidrotalcites and electrospun nanofibers - Investigates high barrier plastics for food packaging assessing recent advances in various plastic packaging technologies such as modified atmosphere packaging (MAP)