Transition to Turbulence

Transition to Turbulence

Author: Tapan K. Sengupta

Publisher: Cambridge University Press

Published: 2021-09-30

Total Pages: 643

ISBN-13: 1108490417

DOWNLOAD EBOOK

"Present understanding of transition to turbulence has now been studied over one hundred and fifty years. The path the studies have taken posed it as a modal eigenvalue problem. Some researchers have suggested alternative models without being specific. First-principle based approach of receptivity is the route to build bridges among ideas for solving the Navier-Stokes equation for specific canonical problems. This book highlights the mathematical physics, scientific computing, and new ideas and theories for nonlinear analyses of fluid flows, for which vorticity dynamics remain central. This book is a blend of classic with distinctly new ideas, which establish different dynamics of flows, from genesis to evolution of disturbance fields with rigorously developed methods to tracing coherent structures amidst the seemingly random and chaotic fluid dynamics of transitional and turbulent flows"--


Instabilities of Flows and Transition to Turbulence

Instabilities of Flows and Transition to Turbulence

Author: Tapan K. Sengupta

Publisher: CRC Press

Published: 2012-04-24

Total Pages: 522

ISBN-13: 1439879451

DOWNLOAD EBOOK

This book covers material ranging from classical hydrodynamic instability to contemporary research areas, including bluff body flow instability and mixed convection flows. It also examines applications in aerospace and other branches of engineering such as fluid mechanics. The author addresses classical material as well as new perspectives and presents comprehensive coverage of receptivity to complement the instability material. This book presents a concise, up-to-date treatment of theory and applications of viscous flow instability, providing both current knowledge and techniques.


Hydrodynamic Instability and Transition to Turbulence

Hydrodynamic Instability and Transition to Turbulence

Author: Akiva M. Yaglom

Publisher: Springer Science & Business Media

Published: 2012-12-18

Total Pages: 611

ISBN-13: 9400742371

DOWNLOAD EBOOK

This book is a complete revision of the part of Monin & Yaglom's famous two-volume work "Statistical Fluid Mechanics: Mechanics of Turbulence" that deals with the theory of laminar-flow instability and transition to turbulence. It includes the considerable advances in the subject that have been made in the last 15 years or so. It is intended as a textbook for advanced graduate courses and as a reference for research students and professional research workers. The first two Chapters are an introduction to the mathematics, and the experimental results, for the instability of laminar (or inviscid) flows to infinitesimal (in practice "small") disturbances. The third Chapter develops this linear theory in more detail and describes its application to particular problems. Chapters 4 and 5 deal with instability to finite-amplitude disturbances: much of the material has previously been available only in research papers.


Turbulence In Coastal And Civil Engineering

Turbulence In Coastal And Civil Engineering

Author: B Mutlu Sumer

Publisher: World Scientific

Published: 2020-03-23

Total Pages: 758

ISBN-13: 9813234326

DOWNLOAD EBOOK

This book discusses the subject of turbulence encountered in coastal and civil engineering.The primary aim of the book is to describe turbulence processes including transition to turbulence; mean and fluctuating flows in channels/pipes, and in currents; wave boundary layers (including boundary layers under solitary waves); streaming processes in wave boundary layers; turbulence processes in breaking waves including breaking solitary waves; turbulence processes such as bursting process and their implications for sediment transport; flow resistance in steady and wave boundary layers; and turbulent diffusion and dispersion processes in the coastal and river environment, including sediment transport due to diffusion/dispersion.Both phenomenological and statistical theories are described in great detail. Turbulence modelling is also described, and several examples for modelling of turbulence in steady flow and wave boundary layers are presented.The book ends with a chapter containing hands-on exercises on a wide variety of turbulent flows including experimental study of turbulence in an open-channel flow, using Laser Doppler Anemometry; Statistical, correlation and spectral analysis of turbulent air jet flow; Turbulence modelling of wave boundary layer flows; and numerical modelling of dispersion in a turbulent boundary layer, a set of exercises used by the authors in their Masters classes over many years.Although the book is essentially intended for professionals and researchers in the area of Coastal and Civil Engineering, and as a text book for graduate/post graduate students, the contents of the book will, however, additionally provide sufficient background in the study of turbulent flows relevant to many other disciplines, such as Wind Engineering, Mechanical Engineering, and Environmental Engineering.


Turbulence in Fluids

Turbulence in Fluids

Author: Marcel Lesieur

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 435

ISBN-13: 9400905335

DOWNLOAD EBOOK

Turbulence is a dangerous topic which is often at the origin of serious fights in the scientific meetings devoted to it since it represents extremely different points of view, all of which have in common their complexity, as well as an inability to solve the problem. It is even difficult to agree on what exactly is the problem to be solved. Extremely schematically, two opposing points of view have been advocated during these last ten years: the first one is "statistical", and tries to model the evolution of averaged quantities of the flow. This com has followed the glorious trail of Taylor and Kolmogorov, munity, which believes in the phenomenology of cascades, and strongly disputes the possibility of any coherence or order associated to turbulence. On the other bank of the river stands the "coherence among chaos" community, which considers turbulence from a purely deterministic po int of view, by studying either the behaviour of dynamical systems, or the stability of flows in various situations. To this community are also associated the experimentalists who seek to identify coherent structures in shear flows.


Thermofluid Dynamics of Turbulent Flows

Thermofluid Dynamics of Turbulent Flows

Author: Michele Ciofalo

Publisher: Springer Nature

Published: 2021-08-16

Total Pages: 194

ISBN-13: 303081078X

DOWNLOAD EBOOK

The book provides the theoretical fundamentals on turbulence and a complete overview of turbulence models, from the simplest to the most advanced ones including Direct and Large Eddy Simulation. It mainly focuses on problems of modeling and computation, and provides information regarding the theory of dynamical systems and their bifurcations. It also examines turbulence aspects which are not treated in most existing books on this subject, such as turbulence in free and mixed convection, transient turbulence and transition to turbulence. The book adopts the tensor notation, which is the most appropriate to deal with intrinsically tensor quantities such as stresses and strain rates, and for those who are not familiar with it an Appendix on tensor algebra and tensor notation are provided.


Advanced Approaches in Turbulence

Advanced Approaches in Turbulence

Author: Paul Durbin

Publisher: Elsevier

Published: 2021-07-24

Total Pages: 554

ISBN-13: 0128208902

DOWNLOAD EBOOK

Advanced Approaches in Turbulence: Theory, Modeling, Simulation and Data Analysis for Turbulent Flows focuses on the updated theory, simulation and data analysis of turbulence dealing mainly with turbulence modeling instead of the physics of turbulence. Beginning with the basics of turbulence, the book discusses closure modeling, direct simulation, large eddy simulation and hybrid simulation. The book also covers the entire spectrum of turbulence models for both single-phase and multi-phase flows, as well as turbulence in compressible flow. Turbulence modeling is very extensive and continuously updated with new achievements and improvements of the models. Modern advances in computer speed offer the potential for elaborate numerical analysis of turbulent fluid flow while advances in instrumentation are creating large amounts of data. This book covers these topics in great detail. - Covers the fundamentals of turbulence updated with recent developments - Focuses on hybrid methods such as DES and wall-modeled LES - Gives an updated treatment of numerical simulation and data analysis


Applied Fluid Dynamics Handbook

Applied Fluid Dynamics Handbook

Author: Robert D. Blevins

Publisher: Krieger Publishing Company

Published: 2003

Total Pages: 0

ISBN-13: 9781575241821

DOWNLOAD EBOOK

In this edition of a book first published in 1984 by Van Nostrand Reinhold Company, Inc., readers will find a summary of theoretical, experimental, and statistical data on fluid flows. The book is designed to present a range of fluid dynamics in a concise form with extensive use of tables and graphics.