Metal-Sulfur clusters play an essential role in living organisms through the unique character of sulfur-metal bonding. The new volume in prestigious Metal Ions in Life Sciences explores different transition metal complexes with sulfur, their biosynthesis and biological functions in regulation of gene expression, catalysis of important metabolic reactions and protein structure arrangement.
One of the biggest questions in today's biochemistry is how biological molecules became essential for the processes that occur within living cells. This new book from outstanding Metal Ions in Life Science series gives an overview about biochemical evolution of organic molecules and metabolic pathways in living systems and outlines the vital biochemical processes in microbial cells in which metals are involved.
Volume 22, entitled Metal Ions in Bio-Imaging Techniques, of the series Metal Ions in Life Sciences deals with metal ions as tools in imaging. This dates back to the first half of the past century, when barium sulfate was orally given to patients undergoing X-ray examination. The use of contrast agents has since developed into a large interdisciplinary field encompassing not only medicine, but also chemistry, material sciences, physics, biology, engineering, and computer sciences. MILS-22 provides deep and current insights in 17 stimulating chapters on the new research frontiers of this fast growing field on bio-imaging ... and beyond. For example, adding bio-sensing yields theranostic agents, meaning diagnosis and therapy linked in the same molecule; ions of Gd, Mn, Fe, Co, Ir, 99mTc, etc., are involved. Other important topics are, e.g., metal complexes in paramagnetic Chemical Exchange Transfer (paraCEST), radiometals for Positron Emission Tomography (PET) imaging, or paramagnetic metal ion probes for 19F magnetic resonance imaging. MILS-22 is written by 57 internationally recognized experts from 12 countries, that is, from the US via Europe to China. The impact of this vibrant research area is manifested by more than 2300 references and nearly 120 figures, mostly in color, and several informative tables. To conclude, Metal Ions in Bio-Imaging Techniques is an essential resource for scientists working in the wide range from material sciences, enzymology, analytic, organic, and inorganic biochemistry all the way through to medicine including the clinic ... not forgetting that also excellent information for teaching is provided.
Volume 19, entitled Essential Metals in Medicine: Therapeutic Use and Toxicity of Metal Ions in the Clinic of the series Metal Ions in Life Sciences centers on the role of metal ions in clinical medicine. Metal ions are tightly regulated in human health: while essential to life, they can be toxic as well. Following an introductory chapter briefly discussing several important metal-related drugs and diseases and a chapter about drug development, the focus is fi rst on iron: its essentiality for pathogens and humans as well as its toxicity. Chelation therapy is addressed in the context of thalassemia, its relationship to neurodegenerative diseases and also the risks connected with iron administration are pointed out. A subject of intense debate is the essentiality of chromium and vanadium. For example, chromium(III) compounds are taken as a nutritional supplement by athletes and bodybuilders; in contrast, chromate, Cr(VI), is toxic and a carcinogen for humans. The benefi cial and toxic effects of manganese, cobalt, and copper on humans are discussed. The need for antiparasitic agents is emphasized as well as the clinical aspects of metal-containing antidotes for cyanide poisoning. In addition to the essential and possibly essential ones, also other metal ions play important roles in human health, causing harm (like the metalloid arsenic, lead or cadmium) or being used in diagnosis or treatment of human diseases, like gadolinium, gallium, lithium, gold, silver or platinum. The impact of this vibrant research area on metals in the clinic is provided in 14 stimulating chapters, written by internationally recognized experts from the Americas, Europe and China, and is manifested by approximately 2000 references, and about 90 illustrations and tables. Essential Metals in Medicine: Therapeutic Use and Toxicity of Metal Ions in the Clinic is an essential resource for scientists working in the wide range from pharmacology, enzymology, material sciences, analytical, organic, and inorganic biochemistry all the way through to medicine ... not forgetting that it also provides excellent information for teaching.
Tellurium, a well-known chalcogen, finds potential applications in various fields from chemistry to other branches of science such as nanotechnology and macromolecular science. However, its safety must also be taken into consideration when exploring its industrial applications. This book explores the breadth of tellurium's applications, outlines strategies for industrial use, and describes the safety concerns of this element.
At a fundamental level, reticular chemistry offers an intellectually-stimulating journey through discovery, rational design, structural characterization, and technology-driven properties and applications. The breadth of science, techniques, and applications experienced through reticular chemistry is unseen in other fields. Accordingly, based on 30 years of reported research, Reticular Chemistry and Applications: Metal-Organic Frameworks critically details the most important knowledge and know-how available to help old and new reticular chemists alike embark on a project based on these fascinating materials. Overview of the state-of-the-art approaches in design, synthesis, and structural characterization of metal-organic frameworks (MOFs) MOFs applied toward carbon dioxide capture and conversion, methane and hydrogen storage, and industrially-practical catalysis MOFs for energy conversion and storage, water purification and harvesting, and targeted delivery of biologically-relevant molecules Contributions from a multidisciplinary, international consortium of widely-respected reticular chemists
Edited by acclaimed science writer and physicist James Trefil, the Encyclopedia's 1000 entries combine in-depth coverage with a vivid graphic format to bring every facet of science, technology, and medicine into stunning focus. From absolute zero to the Mesozoic era to semiconductors to the twin paradox, Trefil and his co-authors have an uncanny ability to convey how the universe works and to show readers how to apply that knowledge to everyday problems.
Iron–sulfur (FeS) centers are essential protein cofactors in all forms of life. They are involved in many key biological processes. In particular, Fe-S centers not only serve as enzyme cofactors in catalysis and electron transfer, they are also indispensable for the biosynthesis of complex metal-containing cofactors. Among these cofactors are the molybdenum (Moco) and tungsten (Wco) cofactors. Both Moco/Wco biosynthesis and Fe-S cluster assembly are highly conserved among all kingdoms of life. After formation, Fe-S clusters are transferred to carrier proteins, which insert them into recipient apo-proteins. Moco/Wco cofactors are composed of a tricyclic pterin compound, with the metal coordinated to its unique dithiolene group. Moco/Wco biosynthesis starts with an Fe-S cluster-dependent step involving radical/S-adenosylmethionine (SAM) chemistry. The current lack of knowledge of the connection of the assembly/biosynthesis of complex metal-containing cofactors is due to the sheer complexity of their synthesis with regard to both the (genetic) regulation and (chemical) metal center assembly. Studies on these metal-cofactors/cofactor-containing enzymes are important for understanding fundamental cellular processes. They will also provide a comprehensive view of the complex biosynthesis and the catalytic mechanism of metalloenzymes that underlie metal-related human diseases.
This is a textbook covering the transition from energy releasing reactions on the early Earth to energy releasing reactions that fueled growth in the first microbial cells. It is for teachers and college students with an interest in microbiology, geosciences, biochemistry, evolution, or all of the above. The scope of the book is a quantum departure from existing “origin of life” books in that it starts with basic chemistry and links energy-releasing geochemical processes to the reactions of microbial metabolism. The text reaches across disciplines, providing students of the geosciences an origins/biology interface and bringing a geochemistry/origins interface to students of microbiology and evolution. Beginning with physical chemistry and transitioning across metabolic networks into microbiology, the timeline documents chemical events and organizational states in hydrothermal vents – the only environments known that bridge the gap between spontaneous chemical reactions that we can still observe in nature today and the physiology of microbes that live from H2, CO2, ammonia, phosphorus, inorganic salts and water. Life is a chemical reaction. What it is and how it arose are two sides of the same coin. Key Features Provides clear connections between geochemical reactions and microbial metabolism Focuses on chemical mechanisms and transition metals Richly illustrated with color figures explaining reactions and processes Covers the origin of the Earth, the origin of metabolism, the origin of protein synthesis and genetic information as well as the escape into the wild of the first free-living cells: Bacteria and Archaea