Transforms and Applications Handbook

Transforms and Applications Handbook

Author: Alexander D. Poularikas

Publisher: CRC Press

Published: 2018-09-03

Total Pages: 911

ISBN-13: 1420066536

DOWNLOAD EBOOK

Updating the original, Transforms and Applications Handbook, Third Edition solidifies its place as the complete resource on those mathematical transforms most frequently used by engineers, scientists, and mathematicians. Highlighting the use of transforms and their properties, this latest edition of the bestseller begins with a solid introduction to signals and systems, including properties of the delta function and some classical orthogonal functions. It then goes on to detail different transforms, including lapped, Mellin, wavelet, and Hartley varieties. Written by top experts, each chapter provides numerous examples and applications that clearly demonstrate the unique purpose and properties of each type. The material is presented in a way that makes it easy for readers from different backgrounds to familiarize themselves with the wide range of transform applications. Revisiting transforms previously covered, this book adds information on other important ones, including: Finite Hankel, Legendre, Jacobi, Gengenbauer, Laguerre, and Hermite Fraction Fourier Zak Continuous and discrete Chirp-Fourier Multidimensional discrete unitary Hilbert-Huang Most comparable books cover only a few of the transforms addressed here, making this text by far the most useful for anyone involved in signal processing—including electrical and communication engineers, mathematicians, and any other scientist working in this field.


The Transforms and Applications Handbook

The Transforms and Applications Handbook

Author: Alexander D. Poularikas

Publisher: CRC Press

Published: 1996

Total Pages: 1136

ISBN-13:

DOWNLOAD EBOOK

This handbook brings together in a single volume the most important mathematical transforms used by engineers and scientists. It begins with a treatment of the delta function and some of the classical orthogonal functions. The book covers transforms such as Fourier Transforms, Cosine and Sine Transforms, Harley Transforms, Laplace Transforms, Z-Transforms, Hilbert Transforms, Radon and Abel Transforms, Time-Frequency Transformations, Wavelet Transforms, Hankel Transforms, and Mellin Transforms. Applications and examples are included.


The Illustrated Wavelet Transform Handbook

The Illustrated Wavelet Transform Handbook

Author: Paul S Addison

Publisher: CRC Press

Published: 2002-07-15

Total Pages: 384

ISBN-13: 9781420033397

DOWNLOAD EBOOK

The Illustrated Wavelet Transform Handbook: Introductory Theory and Applications in Science, Engineering, Medicine and Finance provides an overview of the theory and practical applications of wavelet transform methods. The author uses several hundred illustrations, some in color, to convey mathematical concepts and the results of applications. The first chapter presents a brief overview of the wavelet transform, including a short history. The remainder of the book is split into two parts: the first part discusses the mathematics of both discrete and continuous wavelet transforms while the second part deals with applications in a variety of subject areas, such as geophysics, medicine, fluid turbulence, engineering testing, speech and sound analysis, image analysis, and data compression. These application chapters make the reader aware of the similarities that exist in the use of wavelet transform analysis across disciplines. A comprehensive list of more than 700 references provides a valuable resource for further study. The book is designed specifically for the applied reader in science, engineering, medicine, finance, or any other of the growing number of application areas. Newcomers to the subject will find an accessible and clear account of the theory of continuous and discrete wavelet transforms, providing a large number of examples of their use across a wide range of disciplines. Readers already acquainted with wavelets can use the book to broaden their perspective.


H-Transforms

H-Transforms

Author: Anatoly A. Kilbas

Publisher: CRC Press

Published: 2004-03-17

Total Pages: 399

ISBN-13: 0203487370

DOWNLOAD EBOOK

Along with more than 2100 integral equations and their solutions, this handbook outlines exact analytical methods for solving linear and nonlinear integral equations and provides an evaluation of approximate methods. Each section provides examples that show how methods can be applied to specific equations.


Handbook of Function and Generalized Function Transformations

Handbook of Function and Generalized Function Transformations

Author: Ahmed I. Zayed

Publisher: CRC Press

Published: 1996-05-15

Total Pages: 684

ISBN-13: 9780849378515

DOWNLOAD EBOOK

Function transformations, which include linear integral transformations, are some of the most important mathematical tools for solving problems in all areas of engineering and the physical sciences. They allow one to quickly solve a problem by breaking it down into a series of smaller, more manageable problems. The author has compiled the most important and widely used of these function transforms in applied mathematics and electrical engineering. In addition to classical transforms, newer transforms such as wavelets, Zak, and Radon are included. The book is neither a table of transforms nor a textbook, but it is a source book that provides quick and easy access to the most important properties and formulas of function and generalized function transformations. It is organized for convenient reference, with chapters broken down into the following sections:


A Student's Guide to Fourier Transforms

A Student's Guide to Fourier Transforms

Author: John Francis James

Publisher: Cambridge University Press

Published: 2002-09-19

Total Pages: 156

ISBN-13: 9780521004282

DOWNLOAD EBOOK

Fourier transform theory is of central importance in a vast range of applications in physical science, engineering, and applied mathematics. This new edition of a successful student text provides a concise introduction to the theory and practice of Fourier transforms, using qualitative arguments wherever possible and avoiding unnecessary mathematics. After a brief description of the basic ideas and theorems, the power of the technique is then illustrated by referring to particular applications in optics, spectroscopy, electronics and telecommunications. The rarely discussed but important field of multi-dimensional Fourier theory is covered, including a description of computer-aided tomography (CAT-scanning). The final chapter discusses digital methods, with particular attention to the fast Fourier transform. Throughout, discussion of these applications is reinforced by the inclusion of worked examples. The book assumes no previous knowledge of the subject, and will be invaluable to students of physics, electrical and electronic engineering, and computer science.


Fourier Transforms

Fourier Transforms

Author: Eric W. Hansen

Publisher: John Wiley & Sons

Published: 2014-10-01

Total Pages: 788

ISBN-13: 1118901797

DOWNLOAD EBOOK

Fourier Transforms: Principles and Applications explains transform methods and their applications to electrical systems from circuits, antennas, and signal processors—ably guiding readers from vector space concepts through the Discrete Fourier Transform (DFT), Fourier series, and Fourier transform to other related transform methods. Featuring chapter end summaries of key results, over two hundred examples and four hundred homework problems, and a Solutions Manual this book is perfect for graduate students in signal processing and communications as well as practicing engineers. Class-tested at Dartmouth Provides the same solid background as classic texts in the field, but with an emphasis on digital and other contemporary applications to signal and image processing Modular coverage of material allows for topics to be covered by preference MATLAB files and Solutions Manual available to instructors Over 300 figures, 200 worked examples, and 432 homework problems


The Illustrated Wavelet Transform Handbook

The Illustrated Wavelet Transform Handbook

Author: Paul S. Addison

Publisher: CRC Press

Published: 2017-01-06

Total Pages: 587

ISBN-13: 1315355280

DOWNLOAD EBOOK

This second edition of The Illustrated Wavelet Transform Handbook: Introductory Theory and Applications in Science, Engineering, Medicine and Finance has been fully updated and revised to reflect recent developments in the theory and practical applications of wavelet transform methods. The book is designed specifically for the applied reader in science, engineering, medicine and finance. Newcomers to the subject will find an accessible and clear account of the theory of continuous and discrete wavelet transforms, while readers already acquainted with wavelets can use the book to broaden their perspective. One of the many strengths of the book is its use of several hundred illustrations, some in colour, to convey key concepts and their varied practical uses. Chapters exploring these practical applications highlight both the similarities and differences in wavelet transform methods across different disciplines and also provide a comprehensive list of over 1000 references that will serve as a valuable resource for further study. Paul Addison is a Technical Fellow with Medtronic, a global medical technology company. Previously, he was co-founder and CEO of start-up company, CardioDigital Ltd (and later co-founded its US subsidiary, CardioDigital Inc) - a company concerned with the development of novel wavelet-based methods for biosignal analysis. He has a master’s degree in engineering and a PhD in fluid mechanics, both from the University of Glasgow, Scotland (founded 1451). His former academic life as a tenured professor of fluids engineering included the output of a large number of technical papers, covering many aspects of engineering and bioengineering, and two textbooks: Fractals and Chaos: An Illustrated Course and the first edition of The Illustrated Wavelet Transform Handbook. At the time of publication, the author has over 100 issued US patents concerning a wide range of medical device technologies, many of these concerning the wavelet transform analysis of biosignals. He is both a Chartered Engineer and Chartered Physicist.


Fast Fourier Transforms

Fast Fourier Transforms

Author: James S. Walker

Publisher: CRC Press

Published: 2017-11-22

Total Pages: 468

ISBN-13: 1351448870

DOWNLOAD EBOOK

This new edition of an indispensable text provides a clear treatment of Fourier Series, Fourier Transforms, and FFTs. The unique software, included with the book and newly updated for this edition, allows the reader to generate, firsthand, images of all aspects of Fourier analysis described in the text. Topics covered include :


Handbook of Mellin Transforms

Handbook of Mellin Transforms

Author: Yu. A. Brychkov

Publisher: CRC Press

Published: 2018-10-10

Total Pages: 788

ISBN-13: 0429784430

DOWNLOAD EBOOK

The Mellin transformation is widely used in various problems of pure and applied mathematics, in particular, in the theory of differential and integral equations and the theory of Dirichlet series. It is found in extensive applications in mathematical physics, number theory, mathematical statistics, theory of asymptotic expansions, and especially, in the theory of special functions and integral transformations. It is essentially used in algorithms of integration in computer algebra systems. Since the majority of integrals encountered in applications can be reduced to the form of the corresponding Mellin transforms with specific parameters, this handbook can also be used for definite and indefinite integrals. By changes in variables, the Mellin transform can be turned into the Fourier and Laplace transforms. The appendices contain formulas of connection with other integral transformations, and an algorithm for determining regions of convergence of integrals. The Handbook of Mellin Transforms will be of interest and useful to all researchers and engineers who use mathematical methods. It will become the main source of formulas of Mellin transforms, as well as indefinite and definite integrals.