Explores the detailed steps necessary to determine the causes of failure. First, the physical characteristics of a gear are studied: where the stress points are, from what directions the forces are applied, where the movement of material progresses, and where strain patterns exist. Second, all external conditions and forces are considered. With this background information, a systematic examination is described from beginning to end, the end being a conclusion about the mode and cause of failure.
This resource explains how to rebuild and modify transmissions from both rear- and front-wheel-drive cars. It explains the principles behind the workings of all manual transmissions, and helps readers understand what they need to do and know to rebuild their own transmissions. Includes how to determine what parts to replace; how and why to replace certain seals, spacers, springs, forks, and other parts; and where to find (and how to measure) the specifications for each particular transmission.
This book is the fourth volume in the series devoted to gear engineering and computer-aided design, production, testing and education. It comprises fundamental and applied research contributions by scientists and gear experts from all the world and covers recent developments and historical achievements in various spheres of mechanical engineering related to different kinds of gears, transmissions, and drive systems. It gathers contributions describing the advanced approaches to research, design, testing and production of practically all common and new kinds of gears for a vast number of advanced applications. Special attention is paid to issues of higher education in the field of gears. The book is intended as a tribute to professor Veniamin Goldfarb (1941-2019), one of the world-known leaders in the field of gear research, education and production, who contributed much to the active international cooperation of gear experts and to promotion of MMS science. The introductory chapter of this book relates his research to major developments in the field of mechanisms and machine science and outlines important contributions that he made within the period of 1964-2019.
Every so often, a reference book appears that stands apart from all others, destined to become the definitive work in its field. The Vibration and Shock Handbook is just such a reference. From its ambitious scope to its impressive list of contributors, this handbook delivers all of the techniques, tools, instrumentation, and data needed to model, analyze, monitor, modify, and control vibration, shock, noise, and acoustics. Providing convenient, thorough, up-to-date, and authoritative coverage, the editor summarizes important and complex concepts and results into “snapshot” windows to make quick access to this critical information even easier. The Handbook’s nine sections encompass: fundamentals and analytical techniques; computer techniques, tools, and signal analysis; shock and vibration methodologies; instrumentation and testing; vibration suppression, damping, and control; monitoring and diagnosis; seismic vibration and related regulatory issues; system design, application, and control implementation; and acoustics and noise suppression. The book also features an extensive glossary and convenient cross-referencing, plus references at the end of each chapter. Brimming with illustrations, equations, examples, and case studies, the Vibration and Shock Handbook is the most extensive, practical, and comprehensive reference in the field. It is a must-have for anyone, beginner or expert, who is serious about investigating and controlling vibration and acoustics.
This is a practical guide for those who do the work of maintaining and improving the reliability of mechanical machinery. It is for engineers and skilled trades personnel who want to understand how failures happen and how the physical causes of the great majority can be readily diagnosed in the field. It explains the four major failure mechanisms, wear, corrosion, overload, and fatigue and, using easy-to-read charts, how they can be diagnosed at the site of the failure. Then, knowing the physical failure mechanics involved, the reader can accurately solve the human causes. To improve the reader’s understanding, all the diagrams and most of the tables have been redrawn. The number of actual failure examples has been increased, plus the last chapter on miscellaneous machine elements includes new material on couplings, universal joints, and plain bearings. Features A practical field guide showing how to recognize how failures occur that can be used to solve more than 85% of mechanical machinery failures Incorporates multiple easy-to-follow logic trees to help the reader diagnose the physical causes of the failure without needing detailed laboratory analysis Explains how the mechanics, corrosion, materials science, and tribology of components can fit together to improve machinery reliability Includes more than 150 completely redrawn charts and tables, plus almost 250 actual failure photographs to help guide the reader to an accurate analysis Contains clear and detailed explanations of how lubricants function and the critical roles of corrosion and lubrication play in causing mechanical failures
All of the critical technical aspects of gear materials technology are addressed in this new reference work. Gear Materials, Properties, and Manufacture is intended for gear metallurgists and materials specialists, manufacturing engineers, lubrication technologists, and analysts concerned with gear failures who seek a better understanding of gear performance and gear life. This volume complements other gear texts that emphasize the design, geometry, and theory of gears. The coverage begins with an overview of the various types of gears used, important gear terminology, applied stresses and strength requirements associated with gears, and lubrication and wear. This is followed by in-depth treatment of metallic (ferrous and nonferrous alloys) and plastic gear materials. Emphasis is on the properties of carburized steels, the material of choice for high-performance power transmission gearing.