Time-Resolved Spectroscopy in Complex Liquids is intended to introduce the experimental researchers to state-of-the-art techniques in the study of the dynamics of complex liquids. The contributors concentrate on time-resolved optical spectroscopy, which recently produced many relevant results and new information about complex liquids. This is an emerging topic of soft-matter science and this book provides the most up-to-date account of new development.
This book embraces all physiochemical aspects of the structure and molecular dynamics of water, focusing on its role in biological objects, e.g. living cells and tissue, and in the formation of functionally active structures of biological molecules and their ensembles. Water is the single most abundant chemical found in all living things. It offers a detailed look into the latest modern physical methods for studying the molecular structure and dynamics of the water and provides a critical analysis of the existing literature data on the properties of water in biological objects. Water as a chemical reagent and as a medium for the formation of conditions for enzymatic catalysis is a core focus of this book. Although well suited for active researchers, the book as a whole, as well as each chapter on its own, can be used as fundamental reference material for graduate and undergraduate students throughout chemistry, physics, biophysics and biomedicine.
The series Topics in Current Chemistry Collections presents critical reviews from the journal Topics in Current Chemistry organized in topical volumes. The scope of coverage is all areas of chemical science including the interfaces with related disciplines such as biology, medicine and materials science. The goal of each thematic volume is to give the non-specialist reader, whether in academia or industry, a comprehensive insight into an area where new research is emerging which is of interest to a larger scientific audience. Each review within the volume critically surveys one aspect of that topic and places it within the context of the volume as a whole. The most significant developments of the last 5 to 10 years are presented using selected examples to illustrate the principles discussed. The coverage is not intended to be an exhaustive summary of the field or include large quantities of data, but should rather be conceptual, concentrating on the methodological thinking that will allow the non-specialist reader to understand the information presented. Contributions also offer an outlook on potential future developments in the field.
Since its development toward the end of the past millennium, high-resolution Inelastic X-Ray Scattering (IXS) has substantially improved our knowledge of the collective dynamics of liquids at mesoscopic scales, that is, over distances and time-lapses approaching those typical of first neighboring atoms' interactions. However, despite the undoubted scientific relevance and the rapid evolution toward maturity, comprehensive monographs on this technique are not available. The primary purpose of this book is to partially fill this lack while providing a helpful reference for both mature scientists and less experienced researchers in the field.After a general introduction to the fundamental aspects of scattering measurements, the IXS cross-section is analytically derived, and the complementarity with Inelastic Neutron Scattering is discussed in detail.The remainder of the book reviews representative IXS studies on simple fluids focusing on topics as relevant as the dynamic crossover from the hydrodynamic to the kinetic regime, the onset of relaxation phenomena and related high-frequency viscoelasticity, the gradual emergence of quantum effects, the evidence of dynamic boundaries partitioning the supercritical domain, the prevalence of solid-like aspects in the high-frequency dynamics of fluids, and the dynamic fingerprints of the polymorphic nature of liquid aggregates.
This book summarizes the results presented at the 15th International Conference on Ultrafast Phenomena and provides an up-to-date view of this important field. It presents the latest advances in ultrafast science, including both ultrafast optical technology and the study of ultrafast phenomena. It covers picosecond, femtosecond, and attosecond processes relevant to applications in physics, chemistry, biology, and engineering.
Offers a comprehensive treatment of surface chemistry and its applications to chemical engineering, biology, and medicine. Focuses on the chmical and physical structure of oil-water interfaces and membrane surfaces. Details interfacial potentials, ion solvation, and electrostatic instabilities in double layers.
Time-Resolved Spectroscopy in Complex Liquids is intended to introduce the experimental researchers to state-of-the-art techniques in the study of the dynamics of complex liquids. The contributors concentrate on time-resolved optical spectroscopy, which recently produced many relevant results and new information about complex liquids. This is an emerging topic of soft-matter science and this book provides the most up-to-date account of new development.
The Nato Advanced Study Institute "Phase Transitions in Liquid Crystals" was held May 2-12, 1991, in Erice, Sicily. This was the 16th conference organized by the International School of Quantum Electronics, under the auspices of the "Ettore Majorana" Centre for Scientific Culture. The subject of "Liquid Crystals" has made amazing progress since the last ISQE Course on this subject in 1985. The present Proceedings give a tutorial introduction to today's most important areas, as well as a review of current results by leading researchers. We have brought together some of the world's acknowledged experts in the field to summarize both the present state of their research and its background. Most of the lecturers attended all the lectures and devoted their spare hours to stimulating discussions. We would like to thank them all for their admirable contributions. The Institute also took advantage of a very active audience; most of the students were active researchers in the field and contributed with discussions and seminars. Some of these student seminars are also included in these Proceedings. We did not modify the original manuscripts in editing this book, but we did group them according to the following topics: 1) "Theoretical Foundations"; 2) "Thermotropic Liquid Crystals"; 3) "Ferroelectric Liquid Crystals"; 4) "Polymeric Liquid Crystals"; and 5) "Lyotropic Liquid Crystals".
This series of books, which is published at the rate of about one per year, addresses fundamental problems in materials science. The contents cover a broad range of topics from small clusters of atoms to engineering materials and involve chemistry, physics, materials science, and engineering, with length scales ranging from Angstroms up to millimeters. The emphasis is on basic science rather than on applications. Each book focuses on a single area of current interest and brings together leading experts to give an up-to-date discussion of their work and the work of others. Each article contains enough references that the interested reader can access the relevant literature. Thanks are given to the Center for Fundamental Materials Research at Michigan State University for supporting this series. M.F. Thorpe, Series Editor E-mail: [email protected] East Lansing, Michigan, November 200 I v PREFACE The study of the atomic structure of crystalline materials began at the beginning of the twentieth century with the discovery by Max von Laue and by W.H. and W.L. Bragg that crystals diffract x-rays. At that time, even the existence of atoms was controversial.