Choosing from the numerous 3D vision methods available can be frustrating for scientists and engineers, especially without a comprehensive resource to consult. Filling this gap, this handbook gives an in-depth look at the most popular 3D imaging techniques. Written by key players in the field and inventors of important imaging technologies, it helps you understand the core of 3D imaging technology and choose the proper 3D imaging technique for your needs. For each technique, the book provides its mathematical foundations, summarizes its successful applications, and discusses its limitations.
A comprehensive review of the state of the art and advances in the field, while also outlining the future potential and development trends of optical imaging and optical metrology, an area of fast growth with numerous applications in nanotechnology and nanophysics. Written by the world's leading experts in the field, it fills the gap in the current literature by bridging the fields of optical imaging and metrology, and is the only up-to-date resource in terms of fundamental knowledge, basic concepts, methodologies, applications, and development trends.
Provides basic explanations of the operation and application of the most common methods in the field and in commercial use. The first half of the book presents a working knowledge of the mechanism and limitations of optical dimensional measurement methods. The book concludes with a series of manufacturing application examples.
Due to their speed, data density, and versatility, optical metrology tools play important roles in today's high-speed industrial manufacturing applications. Handbook of Optical Dimensional Metrology provides useful background information and practical examples to help readers understand and effectively use state-of-the-art optical metrology methods
This is the third edition of the well-known guide to close-range photogrammetry. It provides a thorough presentation of the methods, mathematics, systems and applications which comprise the subject of close-range photogrammetry, which uses accurate imaging techniques to analyse the three-dimensional shape of a wide range of manufactured and natural objects.
This book discusses the various principles in confocal scanning microscopy which has become a useful tool in many practical fields including biological studies and industrial inspection. The methodology presented in this book is unique and is based on the concept of the three-dimensional transfer functions which have been developed by the author and his colleagues over the last five years. With the 3-D transfer functions, resolving power in 3-D confocal imaging can be defined in a unified way, different optical arrangements can be compared with an insight into their inter-relationship, and images of thick objects can be modeled in terms of the Fourier transform which makes the analysis easy. The aim of this book is to provide a systematic introduction to the concept of the 3-D transfer functions in various confocal microscopes, to describe the methods for the derivation of different 3-D transfer functions, and to explain the principles of 3-D confocal imaging in terms of these functions.