Theory of Statistical Experiments

Theory of Statistical Experiments

Author: H. Heyer

Publisher: Springer

Published: 2011-10-12

Total Pages: 289

ISBN-13: 9781461382201

DOWNLOAD EBOOK

By a statistical experiment we mean the procedure of drawing a sample with the intention of making a decision. The sample values are to be regarded as the values of a random variable defined on some meas urable space, and the decisions made are to be functions of this random variable. Although the roots of this notion of statistical experiment extend back nearly two hundred years, the formal treatment, which involves a description of the possible decision procedures and a conscious attempt to control errors, is of much more recent origin. Building upon the work of R. A. Fisher, J. Neyman and E. S. Pearson formalized many deci sion problems associated with the testing of hypotheses. Later A. Wald gave the first completely general formulation of the problem of statisti cal experimentation and the associated decision theory. These achieve ments rested upon the fortunate fact that the foundations of probability had by then been laid bare, for it appears to be necessary that any such quantitative theory of statistics be based upon probability theory. The present state of this theory has benefited greatly from contri butions by D. Blackwell and L. LeCam whose fundamental articles expanded the mathematical theory of statistical experiments into the field of com parison of experiments. This will be the main motivation for the ap proach to the subject taken in this book.


Mathematical Theory of Statistics

Mathematical Theory of Statistics

Author: Helmut Strasser

Publisher: Walter de Gruyter

Published: 2011-04-20

Total Pages: 505

ISBN-13: 3110850826

DOWNLOAD EBOOK

The series is devoted to the publication of monographs and high-level textbooks in mathematics, mathematical methods and their applications. Apart from covering important areas of current interest, a major aim is to make topics of an interdisciplinary nature accessible to the non-specialist. The works in this series are addressed to advanced students and researchers in mathematics and theoretical physics. In addition, it can serve as a guide for lectures and seminars on a graduate level. The series de Gruyter Studies in Mathematics was founded ca. 30 years ago by the late Professor Heinz Bauer and Professor Peter Gabriel with the aim to establish a series of monographs and textbooks of high standard, written by scholars with an international reputation presenting current fields of research in pure and applied mathematics. While the editorial board of the Studies has changed with the years, the aspirations of the Studies are unchanged. In times of rapid growth of mathematical knowledge carefully written monographs and textbooks written by experts are needed more than ever, not least to pave the way for the next generation of mathematicians. In this sense the editorial board and the publisher of the Studies are devoted to continue the Studies as a service to the mathematical community. Please submit any book proposals to Niels Jacob.


Statistical Analysis of Designed Experiments

Statistical Analysis of Designed Experiments

Author: Ajit C. Tamhane

Publisher: John Wiley & Sons

Published: 2012-09-12

Total Pages: 724

ISBN-13: 1118491432

DOWNLOAD EBOOK

A indispensable guide to understanding and designing modern experiments The tools and techniques of Design of Experiments (DOE) allow researchers to successfully collect, analyze, and interpret data across a wide array of disciplines. Statistical Analysis of Designed Experiments provides a modern and balanced treatment of DOE methodology with thorough coverage of the underlying theory and standard designs of experiments, guiding the reader through applications to research in various fields such as engineering, medicine, business, and the social sciences. The book supplies a foundation for the subject, beginning with basic concepts of DOE and a review of elementary normal theory statistical methods. Subsequent chapters present a uniform, model-based approach to DOE. Each design is presented in a comprehensive format and is accompanied by a motivating example, discussion of the applicability of the design, and a model for its analysis using statistical methods such as graphical plots, analysis of variance (ANOVA), confidence intervals, and hypothesis tests. Numerous theoretical and applied exercises are provided in each chapter, and answers to selected exercises are included at the end of the book. An appendix features three case studies that illustrate the challenges often encountered in real-world experiments, such as randomization, unbalanced data, and outliers. MinitabĀ® software is used to perform analyses throughout the book, and an accompanying FTP site houses additional exercises and data sets. With its breadth of real-world examples and accessible treatment of both theory and applications, Statistical Analysis of Designed Experiments is a valuable book for experimental design courses at the upper-undergraduate and graduate levels. It is also an indispensable reference for practicing statisticians, engineers, and scientists who would like to further their knowledge of DOE.


Comparison of Statistical Experiments

Comparison of Statistical Experiments

Author: Erik Torgersen

Publisher: Cambridge University Press

Published: 1991-03-14

Total Pages: 706

ISBN-13: 9780521250306

DOWNLOAD EBOOK

There are a number of important questions associated with statistical experiments: when does one given experiment yield more information than another; how can we measure the difference in information; how fast does information accumulate by repeating the experiment? The means of answering such questions has emerged from the work of Wald, Blackwell, LeCam and others and is based on the ideas of risk and deficiency. The present work which is devoted to the various methods of comparing statistical experiments, is essentially self-contained, requiring only some background in measure theory and functional analysis. Chapters introducing statistical experiments and the necessary convex analysis begin the book and are followed by others on game theory, decision theory and vector lattices. The notion of deficiency, which measures the difference in information between two experiments, is then introduced. The relation between it and other concepts, such as sufficiency, randomisation, distance, ordering, equivalence, completeness and convergence are explored. This is a comprehensive treatment of the subject and will be an essential reference for mathematical statisticians.


Statistical Experiments and Decisions

Statistical Experiments and Decisions

Author: Al?bert Nikolaevich Shiri?aev

Publisher: World Scientific

Published: 2000

Total Pages: 306

ISBN-13: 9789810241018

DOWNLOAD EBOOK

This volume provides an exposition of some fundamental aspects of the asymptotic theory of statistical experiments. The most important of them is ?how to construct asymptotically optimal decisions if we know the structure of optimal decisions for the limit experiment?.


Statistical Analysis of Designed Experiments

Statistical Analysis of Designed Experiments

Author: Helge Toutenburg

Publisher: Springer Science & Business Media

Published: 2006-05-09

Total Pages: 507

ISBN-13: 0387227725

DOWNLOAD EBOOK

Unique in commencing with relatively simple statistical concepts and ideas found in most introductory statistical textbooks, this book goes on to cover more material useful for undergraduates and graduate in statistics and biostatistics.


The Design of Experiments

The Design of Experiments

Author: R. Mead

Publisher: Cambridge University Press

Published: 1990-07-26

Total Pages: 640

ISBN-13: 9780521287623

DOWNLOAD EBOOK

In all the experimental sciences, good design of experiments is crucial to the success of research. Well-planned experiments can provide a great deal of information efficiently and can be used to test several hypotheses simultaneously. This book is about the statistical principles of good experimental design and is intended for all applied statisticians and practising scientists engaged in the design, implementation and analysis of experiments. Professor Mead has written the book with the emphasis on the logical principles of statistical design and employs a minimum of mathematics. Throughout he assumes that the large-scale analysis of data will be performed by computers and he is thus able to devote more attention to discussions of how all of the available information can be used to extract the clearest answers to many questions. The principles are illustrated with a wide range of examples drawn from medicine, agriculture, industry and other disciplines. Numerous exercises are given to help the reader practise techniques and to appreciate the difference that good design of experiments can make to a scientific project.


Asymptotic Methods in Statistical Decision Theory

Asymptotic Methods in Statistical Decision Theory

Author: Lucien Le Cam

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 767

ISBN-13: 1461249465

DOWNLOAD EBOOK

This book grew out of lectures delivered at the University of California, Berkeley, over many years. The subject is a part of asymptotics in statistics, organized around a few central ideas. The presentation proceeds from the general to the particular since this seemed the best way to emphasize the basic concepts. The reader is expected to have been exposed to statistical thinking and methodology, as expounded for instance in the book by H. Cramer [1946] or the more recent text by P. Bickel and K. Doksum [1977]. Another pos sibility, closer to the present in spirit, is Ferguson [1967]. Otherwise the reader is expected to possess some mathematical maturity, but not really a great deal of detailed mathematical knowledge. Very few mathematical objects are used; their assumed properties are simple; the results are almost always immediate consequences of the definitions. Some objects, such as vector lattices, may not have been included in the standard background of a student of statistics. For these we have provided a summary of relevant facts in the Appendix. The basic structures in the whole affair are systems that Blackwell called "experiments" and "transitions" between them. An "experiment" is a mathe matical abstraction intended to describe the basic features of an observational process if that process is contemplated in advance of its implementation. Typically, an experiment consists of a set E> of theories about what may happen in the observational process.


The Statistical Analysis of Experimental Data

The Statistical Analysis of Experimental Data

Author: John Mandel

Publisher: Courier Corporation

Published: 2012-06-08

Total Pages: 434

ISBN-13: 048613959X

DOWNLOAD EBOOK

First half of book presents fundamental mathematical definitions, concepts, and facts while remaining half deals with statistics primarily as an interpretive tool. Well-written text, numerous worked examples with step-by-step presentation. Includes 116 tables.


Understanding Statistics and Experimental Design

Understanding Statistics and Experimental Design

Author: Michael H. Herzog

Publisher: Springer

Published: 2019-08-13

Total Pages: 146

ISBN-13: 3030034992

DOWNLOAD EBOOK

This open access textbook provides the background needed to correctly use, interpret and understand statistics and statistical data in diverse settings. Part I makes key concepts in statistics readily clear. Parts I and II give an overview of the most common tests (t-test, ANOVA, correlations) and work out their statistical principles. Part III provides insight into meta-statistics (statistics of statistics) and demonstrates why experiments often do not replicate. Finally, the textbook shows how complex statistics can be avoided by using clever experimental design. Both non-scientists and students in Biology, Biomedicine and Engineering will benefit from the book by learning the statistical basis of scientific claims and by discovering ways to evaluate the quality of scientific reports in academic journals and news outlets.