Put Theory into Practice Scarcity of natural resources, higher costs, higher demand, and concerns about environmental pollution- under these circumstances, improving food supply worldwide with adequate quantity and quality is fundamental. Based on the author's more than forty years of experience, The Use of Nutrients in Crop Plants
Crop nutrition is an essential discipline of plant science of crop production. The importance of crop nutrition for increasing yield and the quality of crops is difficult to explain. In simple words, crop nutrition is the study of uptake and utilization of elements for the growth and development of crop plants.This book includes the classification of essential nutrients in various aspects with special emphasis on the physiological and biochemical functions, and their uptake process through the membrane. Much emphasis has been given on the root structure and rhizosphere in relation to nutrient uptake and their assimilation in the cellular level. The goal of this book is to establish a thorough understanding of plant nutrition. It is a textbook for agriculturists, researchers in the field of crop science, students', and academicians and for crop cultivators as a whole. Finally, it is a consolidated book, comprising different areas of plant nutrition and the stakeholders will benefit from a book like this.
Nutrient Use Efficiency in Plants: Concepts and Approaches is the ninth volume in the Plant Ecophysiology series. It presents a broad overview of topics related to improvement of nutrient use efficiency of crops. Nutrient use efficiency (NUE) is a measure of how well plants use the available mineral nutrients. It can be defined as yield (biomass) per unit input (fertilizer, nutrient content). NUE is a complex trait: it depends on the ability to take up the nutrients from the soil, but also on transport, storage, mobilization, usage within the plant, and even on the environment. NUE is of particular interest as a major target for crop improvement. Improvement of NUE is an essential pre-requisite for expansion of crop production into marginal lands with low nutrient availability but also a way to reduce use of inorganic fertilizer.
Plant nutrition; The soil as a plant nutrient medium; Nutrient uptake and assimilation; Plant water relationships; Plant growth and crop production; Fertilizer application; Nitrogen; Sulphur; Phosphorus; Potassium; Calcium; Magnesium; Iron; Manganese; Zinc; Copper; Molybdenum; Boron; Further elements of importance; Elements with more toxic effects.
The burgeoning demand on the world food supply, coupled with concern over the use of chemical fertilizers, has led to an accelerated interest in the practice of precision agriculture. This practice involves the careful control and monitoring of plant nutrition to maximize the rate of growth and yield of crops, as well as their nutritional value.
This book explores the agricultural, commercial, and ecological future of plants in relation to mineral nutrition. It covers various topics regarding the role and importance of mineral nutrition in plants including essentiality, availability, applications, as well as their management and control strategies. Plants and plant products are increasingly important sources for the production of energy, biofuels, and biopolymers in order to replace the use of fossil fuels. The maximum genetic potential of plants can be realized successfully with a balanced mineral nutrients supply. This book explores efficient nutrient management strategies that tackle the over and under use of nutrients, check different kinds of losses from the system, and improve use efficiency of the plants. Applied and basic aspects of ecophysiology, biochemistry, and biotechnology have been adequately incorporated including pharmaceuticals and nutraceuticals, agronomical, breeding and plant protection parameters, propagation and nutrients managements. This book will serve not only as an excellent reference material but also as a practical guide for readers, cultivators, students, botanists, entrepreneurs, and farmers.
This collection reviews current research on understanding nutrient cycles, the ways crops process nutrients, the environmental effects of fertilizer use and how this understanding can be used to improve nutrient use efficiency for a more resource-efficient and climate-smart agriculture. Parts 1-3 summarise research on the primary macronutrients: nitrogen, phosphorus and potassium. Chapter review what we know about nutrient cycles, crop nutrient processing, potential environmental effects and ways of optimising nutrient use efficiency (NUE). The fourth section of the book discusses secondary macronutrients and micronutrients including: calcium, magnesium, sulphur, zinc, boron, manganese and molybdenum. The final two parts of the book review research on optimising fertiliser use. Chapters cover topics such as assessing nutrient availability, decision support systems for optimising crop nutrition, advances in site-specific nutrient management and advances in integrated plant nutrient management. Other chapters discuss enhanced efficiency fertilisers, the use of bio-effectors/bio-stimulants, fertigation techniques and the use of organic amendments. With its distinguished editor and international team of expert authors, this will be a standard reference on optimising crop nutrition for the crop science and farming community.
New research reveals that plants actively acquire nutrients; the acquisition process is not a passive one in which plants simply wait for dissolved nutrients to come closer to their roots. In fact plants play a far more active role than once was understood to be possible in nutrient acquisition and in adaptation to problem soils. This book presents an excellent overview and summary of new concepts of plant nutrient acquisition mechanisms, and sets forth their practical implications in crop production. The scope is wide ranging, from biochemical, molecular, and genetic analysis of nutrient acquisition to global nutritional problems. Especially noteworthy are the sections on the cell apoplast, phosphorus-solubilizing organisms, and direct uptake of macro-organic molecules. With contributions by leading scientists worldwide, the book provides an invaluable resource for researchers in plant and environmental sciences and in agronomy and other branches of agriculture.
Greenhouse cultivation is noted for its high uptake of minerals, consistent climatic conditions, exclusion of natural precipitation and control of salt accumulation. Acknowledging that plant nutrition in greenhouse cultivation differs in many essentials from field production, this volume details specific information about testing methods for soils and substrates in a greenhouse environment. It does so while offering a universally applicable analysis. This is based on the composition of the soil and substrate solutions, methods for the interpretation of tissue tests, and crop responses on salinity and water supply in relation to fertilizer application. Fertilizer additions, related to analytical data of soil and substrate samples, are presented for a wide range of vegetable and ornamental crops. The subject is especially apt now as substrate growing offers excellent possibilities for the optimal use of water and nutrients, as well as the potential for sustainable production methods for greenhouse crops.