Cyclic Polymers (Second Edition) reviews the many recent advances in this rapidly expanding subject since the publication of the first edition in 1986. The preparation, characterisation, properties and applications of a wide range of organic and inorganic cyclic oligomers and polymers are described in detail, together with many examples of catenanes and rotaxanes. The importance of large cyclics in biological chemistry and molecular biology is emphasised by a wide coverage of circular DNA, cyclic peptides and cyclic oligosaccharides and polysaccharides. Experimental techniques and theoretical aspects of cyclic polymers are included, as well as examples of their uses such as ring opening polymerisation reactions to give commercially important materials. This book covers a wide range of topics which should be of interest to many scientific research workers (for example, in polymer science, chemistry and molecular biology), as well as providing a reference text for undergraduate and graduate students.
Industry and academia remain fascinated with the diverse properties and applications of polymers. However, most introductory books on this enormous and important field do not stress practical problem solving or include recent advances, which are critical for the modern polymer scientist-to-be. Updating the popular first edition of "the polymer book
Understanding the reactivity of monomers is crucial in creating copolymers and determining the outcome of copolymerization. Covering the fundamental aspects of polymerization, Synthesis and Applications of Copolymers explores the reactivity of monomers and reaction conditions that ensure that the newly formed polymeric materials exhibit desired properties. Referencing a wide-range of disciplines, the book provides researchers, students, and scientists with the preparation of a diverse variety of copolymers and their recent developments, with a particular focus on copolymerization, crystallization, and techniques like nanoimprinting and micropatterning.
Polymers are huge macromolecules composed of repeating structural units. While polymer in popular usage suggests plastic, the term actually refers to a large class of natural and synthetic materials. Due to the extraordinary range of properties accessible, polymers have come to play an essential and ubiquitous role in everyday life - from plastics and elastomers on the one hand to natural biopolymers such as DNA and proteins on the other hand. The study of polymer science begins with understanding the methods in which these materials are synthesized. Polymer synthesis is a complex procedure and can take place in a variety of ways. This book brings together the "Who is who" of polymer science to give the readers an overview of the large field of polymer synthesis. It is a one-stop reference and a must-have for all Chemists, Polymer Chemists, Chemists in Industry, and Materials Scientists.
HANDBOOK OF PYRROLIDONE AND CAPROLACTAM BASED MATERIALS Brings together, for the first time, a comprehensive review of all aspects of pyrrolidone- and caprolactam-based materials This comprehensive, six-volume set describes the broad technical universe of γ- and ε- lactams, reviewing in-depth the chemistry of the small lactam-based molecules, uncovering their unique properties and showing how they have enabled a myriad of commercially important applications. From synthesis, through production and into applications, this extensive work targets significant and recent trends in γ- and ε-lactam science and technology and addresses all key aspects of pyrrolidone- and caprolactam-based materials to produce a definitive overview of the field. Handbook of Pyrrolidone and Caprolactam Based Materials provides a detailed and modern portrait of the impact of pyrrolidone- and caprolactam-based materials on the world, as well as potential future possibilities. Volume One presents the chemistry of small lactam-based molecules and uncovers their unique properties. Volume Two covers polymeric materials, including polyvinyl pyrrolidone and polyvinyl caprolactam, and reviews homopolymerization, copolymerization, controlled radical polymermization and acrylate based pyrrolidone polymerizations. Volume Three examines the physical chemistry and molecular interactions of pyrrolidone and caprolactam based materials. Volume Four expands upon the characterization theme from the third volume, and includes detailed discussions of nuclear magnetic resonance (NMR) and Fourier transform-infrared (FT-IR) spectroscopy, thermal and mechanical properties, and imaging techniques. Volume Five explores pharmaceutical applications in both ingredients and materials, as well as the antimicrobial properties and applications of pyrrolidone and caprolactam-based materials, and their toxicology. Volume Six covers personal and home care, skin care, transdermal applications and wound care, oral care, adhesion related applications and digital applications such as inkjet technology. Handbook of Pyrrolidone and Caprolactam Based Materials will appeal to industrial scientists and engineers interested in polymer development and manufacturing. It will also benefit academic researchers working in the fields of chemistry, materials science, and chemical and process engineering.
Natural and synthetic water soluble polymers are used in a wide range of familiar industrial and consumer products, including coatings and inks, papers, adhesives, cosmetics and personal care products. They perform a variety of functions without which these products would be significantly more expensive, less effective or both. Written for research, development and formulation chemists, technologists and engineers at graduate level and beyond in the fine and specialty chemicals, polymers, food and pharmaceutical industries, the Handbook of Industrial Water Soluble Polymers deals specifically with the functional properties of both natural and synthetic water soluble polymers. By taking a function based approach, rather than a “polymer specific” approach the book illustrates how polymer structure leads to effect, and shows how different polymer types can be employed to achieve appropriate product properties.
A summary of block copolymer chemical structures and synthesis. It discusses physical methods of characterization such as computer simulation, microhardness, dielectric spectroscopy, thermal mechanical relaxation, ultrasonic characterization, transmission electron microscopy, X-ray scattering, and NMR, among others. It also outlines rheological and
The fluorine atom, by virtue of its electronegativity, size and bond strength with carbon, can be used to create compounds with remarkable properties. Small molecules containing fluorine have many positive impacts on everyday life of which blood substitutes, pharmaceuticals and surface modifiers are only a few examples. Fluoropolymers, too, while traditionally associated with extreme high-performance applications have found their way into our homes, our clothing and even our language. Much progress has been made in understanding the sometimes confounding properties of fluoropolymers. Computer simulation is now contributing to this with new fluorine force fields and other parameters, bringing realistic prediction within reach of the practicing physical chemist. Fluoropolymers 1: Synthesis and Fluoropolymers 2: Properties attempt to bring together in one place the chemistry, physics and engineering properties of fluoropolymers. The collection was intended to provide balance between breadth and depth, with contributions ranging from the introduction of fluoropolymer structure-property relationships, to reviews of subfields, to more focused topical reports.
A concise and practical overview of the most important modern synthetic aspects of conjugated polymers and carbon materials, including their properties and applications. Well structured, this book summarizes recent achievements, outlines the current state and reviews research trends. As such, a wide variety of polymerization techniques are included on both a strategic as well as a practical level, including Stille, Suzuki , and direct (hetero)arylation polymerizations. Furthermore, it covers various carbon-rich materials, such as graphene and carbon nanotubes, followed by a look at how the different synthetic pathways and strategies influence their final properties, for example, for use in organic electronic devices. The whole is rounded off with a discussion of future technology advances. An essential reference for newcomers as well as experienced researchers in the field.