In 1998 Thomas Hales dramatically announced the solution of a problem that has long teased eminent mathematicians: what is the densest possible arrangement of identical spheres? The Pursuit of Perfect Packing recounts the story of this problem and many others that have to do with packing things together. The examples are taken from mathematics, phy
The science of complex materials continues to engage researchers from a vast range of disciplines, including physics, mathematics, computational science, and virtually all domains of engineering.This volume presents a unique multidisciplinary panorama of the current research in complex materials. The contributions explore an array of problems reflecting recent developments in four main areas: characterization and modeling of disordered packings, micromechanics and continuum theory; discrete element method; statistical mechanics. The common theme is the quest to unravel the connection between the microscopic and macroscopic properties of complex materials.
Smart Nanoconcretes and Cement-Based Materials: Properties, Modelling and Applications explores the fundamental concepts and applications of smart nanoconcretes with self-healing, self-cleaning, photocatalytic, antibacterial, piezoelectrical, heating and conducting properties and how they are used in modern high-rise buildings, hydraulic engineering, highways, tunnels and bridges. This book is an important reference source for materials scientists and civil engineers who are looking to enhance the properties of smart nanomaterials to create stronger, more durable concrete. Explores the mechanisms through which active agents are released from nanocontainers inside concrete Shows how embedded smart nanosensors, including carbon cement-based smart sensors and micro/nano strain-sensors, are used to increase concrete performance Discusses the major challenges of integrating smart nanomaterials into concrete composites
Given that for centuries, the standard tool to understand diseases in tissues was the microscope and that its major limitation was that only excised tissue could be used, recent technology now permits the examination of diseased tissue in vivo. Optical coherence tomography (OCT) has promising potential when applied to coronary artery disease. OCT has the capability to identify coronary plaque and to distinguish between plaques that are stable and unstable. If the plaques are stable then OCT can direct percutaneous intervention (angioplasty or stenting). Optical coherence tomography is a light-based imaging technology that allows for very high resolution imaging in biological tissues. It has been first applied in ophthalmology, where it soon became the golden standard for the assessment of (epi-) retinal processes. The unique imaging capabilities have raised the interest of researchers and clinicians in the field of cardiovascular disease, since OCT offers unique possibilities to study atherosclerosis pathophysiology in vivo. With over 1.1M Americans having a heart attack this year because of unstable plaque rupture, OCT may have an increasingly important role in the early diagnosis of coronary artery disease. This unique publication offers the reader the basic background to OCT and its role in the diagnosis and management of coronary artery disease. The Handbook of Optical Coherence Tomography in Cardiovascular Research introduces the cardiovascular application of this technology. Clinicians, biologists, engineers and physicist are discussing different aspects of cardiovascular OCT application in a multidisciplinary approach. The handbook offers the readership a concise overview on the current state of the art of vascular OCT imaging and sheds light on a variety of exciting new developments. The physics, technical principles of OCT and its application in a broad spectrum of cardiovascular research areas are summarized by highly recognized specialists. The potential of OCT in peripheral and coronary arteries and in developmental cardiology are described. Each research area is introduced by a clinical expert in the field followed by discussion of different aspects from an engineering, biomedical and clinical perspective. Specifically, the current capabilities for plaque characterization, detection of vulnerable plaque, guidance of interventional procedures, Doppler-assessment, and molecular contrast imaging are being described. The Handbook of Optical Coherence Tomography in Cardiovascular Research targets researchers and clinicians involved in the field of atherosclerosis. The summary of basic physics, engineering solutions, pre-clinical and clinical application covers all relevant aspects and will be a valuable reference source.
The Kepler conjecture, one of geometry's oldest unsolved problems, was formulated in 1611 by Johannes Kepler and mentioned by Hilbert in his famous 1900 problem list. The Kepler conjecture states that the densest packing of three-dimensional Euclidean space by equal spheres is attained by the “cannonball" packing. In a landmark result, this was proved by Thomas C. Hales and Samuel P. Ferguson, using an analytic argument completed with extensive use of computers. This book centers around six papers, presenting the detailed proof of the Kepler conjecture given by Hales and Ferguson, published in 2006 in a special issue of Discrete & Computational Geometry. Further supporting material is also presented: a follow-up paper of Hales et al (2010) revising the proof, and describing progress towards a formal proof of the Kepler conjecture. For historical reasons, this book also includes two early papers of Hales that indicate his original approach to the conjecture. The editor's two introductory chapters situate the conjecture in a broader historical and mathematical context. These chapters provide a valuable perspective and are a key feature of this work.
The year 2008 is a memorial year for Georgiy Vorono (1868-1908), with a number of events in the scientific community commemorating his tremendous contribution to the area of mathematics, especially number theory, through conferences and scientific gatherings in his honor. A notable event taking place in September 2008 a joint c- ference: the 5th Annual International Symposium on Voronoi Diagrams (ISVD) and the 4th International Conference on Analytic Number Theory and Spatial Tessel- tions held in Kyiv, Georgiy Vorono ’s native land. The main ideas expressed by G. Vorono ’s through his fundamental works have influenced and shaped the key dev- opments in computation geometry, image recognition, artificial intelligence, robotics, computational science, navigation and obstacle avoidance, geographical information systems, molecular modeling, astrology, physics, quantum computing, chemical en- neering, material sciences, terrain modeling, biometrics and other domains. This book is intended to provide the reader with in-depth overview and analysis of the fundamental methods and techniques developed following G. Voronoi ideas, in the context of the vast and increasingly growing area of computational intelligence. It represents the collection of state-of-the art research methods merging the bridges between two areas: geometric computing through Voronoi diagrams and intelligent computation techniques, pushing the limits of current knowledge in the area, impr- ing on previous solutions, merging sciences together, and inventing new ways of approaching difficult applied problems.
This volume contains the proceedings of the Fifth International Conference on the Micromechanics of Granular Media, Powders and Grains 2005. Powders and Grains is an international scientific conference held every 4 years that brings together engineers and physicists interested in the micromechanics of granular media.The book is a guide to the hotte
Annotation Nanotechnology is an area of science and technology where dimensions and tolerances in the range of 0.1 nm to 100nm play a critical role. Nanotechnology has opened up new worlds of opportunity. It encompasses precision engineering as well as electronics, electromechanical systems and mainstream biomedical applications in areas as diverse as gene therapy, drug delivery and novel drug discovery techniques. Nanostructured materials present exciting opportunities for manipulating structure and properties on the nanometer scale. The ability to engineer novel structures at the molecular level has led to unprecedented opportunities for materials design. This new book provides detailed insights into the synthesis/structure and property relationships of nanostructured materials. A valuable book for materials scientists, mechanical and electronic engineers and medical researchers. CONTENTS Special properties resulting from nanodimensionality; Nanoparticle technologies; Control of molecular assemblies; Functional organic inorganic nanocomposites; Molecular modelling of nanomorphology in polymers; Nanodimensionality and ionic transport; Multi scale simulation of nanionic polymer systems; Nanoengineering in metallic systems; Characterisation of nanometallic systems with NMR; Mechanical behaviour of metallic nanolaminates; Mechanics of nanocomposite structures; Preparation, properties and performance of Nanocrystalline ceramics; Novel properties from nanoceramics; Hydrogen storage in nanostructured materials; Nanofabrication.
The mechanics underlying the form and structure of biological tissues is being increasingly investigated and appreciated, with new results appearing at a fast pace. Cellular Patterns covers the salient elements of this thriving field of research in a textbook style, including both historic landmark results and recent achievements. By building on concepts such as packing, confinement, surface tension, and elastic instabilities, the book explains the structure and the shape of sheet-like and bulk tissues by adapting the mechanics of continuous media to living matter. It reviews experimental results and empirical laws, and wherever possible, it discusses more than a single theoretical interpretation of a given phenomenon. The in-depth treatment of technical details, the many boxes summarizing essential physical and biological ideas, and an extensive set of problems make this book suitable as a complementary textbook for a graduate course in biophysics and as a standalone reference for students and researchers in biophysics, bioengineering, and mathematical biology interested in the mechanics of tissue. Features: Provides an overview of patterns and shapes seen in animal tissues in addition to an interpretation of these structures in terms of physical forces and processes Contains detailed analysis and a critical comparison of mechanical models of cells, tissues, and morphogenetic movements Presents a visually rich style which is accessible to physicists and biologists alike