Atomistics of Fracture

Atomistics of Fracture

Author: R.M. Latanison

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 1043

ISBN-13: 1461335000

DOWNLOAD EBOOK

It is now more than 100 years since certain detrimental effects on the ductility of iron were first associated with the presence of hydrogen. Not only is hydrogen embrittlement still a major industri al problem, but it is safe to say that in a mechanistic sense we still do not know what hydrogen (but not nitrogen or oxygen, for example) does on an atomic scale to induce this degradation. The same applies to other examples of environmentally-induced fracture: what is it about the ubiquitous chloride ion that induces premature catastrophic fracture (stress corrosion cracking) of ordinarily ductile austenitic stainless steels? Why, moreover, are halide ions troublesome but the nitrate or sulfate anions not deleterious to such stainless steels? Likewise, why are some solid metals embrit tled catastrophically by same liquid metals (liquid metal embrit tlement) - copper and aluminum, for example, are embrittled by liquid mercury. In short, despite all that we may know about the materials science and mechanics of fracture on a macroscopic scale, we know little about the atomistics of fracture in the absence of environmental interactions and even less when embrittlement phe nomena such as those described above are involved. On the other hand, it is interesting to note that physical chemists and surface chemists also have interests in the same kinds of interactions that occur on an atomic scale when metals such as nickel or platinum are used, for example, as catalysts for chemical reactions.


Grain Boundary Segregation in Metals

Grain Boundary Segregation in Metals

Author: Pavel Lejcek

Publisher: Springer Science & Business Media

Published: 2010-07-20

Total Pages: 249

ISBN-13: 3642125050

DOWNLOAD EBOOK

Grain boundaries are important structural components of polycrystalline materials used in the vast majority of technical applications. Because grain boundaries form a continuous network throughout such materials, their properties may limit their practical use. One of the serious phenomena which evoke these limitations is the grain boundary segregation of impurities. It results in the loss of grain boundary cohesion and consequently, in brittle fracture of the materials. The current book deals with fundamentals of grain boundary segregation in metallic materials and its relationship to the grain boundary structure, classification and other materials properties.


Recrystallization and Related Annealing Phenomena

Recrystallization and Related Annealing Phenomena

Author: F.J. Humphreys

Publisher: Elsevier

Published: 2012-12-02

Total Pages: 520

ISBN-13: 008098388X

DOWNLOAD EBOOK

The annealing of deformed materials is of both technological importance and scientific interest. The phenomena have been most widely studied in metals, although they occur in all crystalline materials such as the natural deformation of rocks and the processing of technical ceramics. Research is mainly driven by the requirements of industry, and where appropriate, the book discusses the extent to which we are able to formulate quantitative, physically-based models which can be applied to metal-forming processes.The subjects treated in this book are all active research areas, and form a major part of at least four regular international conference series. However, there have only been two monographs published in recent times on the subject of recrystallization, the latest nearly 20 years ago. Since that time, considerable advances have been made, both in our understanding of the subject and in the techniques available to the researcher.The book covers recovery, recrystallization and grain growth in depth including specific chapters on ordered materials, two-phase alloys, annealing textures and annealing during and after hot working. Also contained are treatments of the deformed state and the structure and mobility of grain boundaries, technologically important examples and a chapter on computer simulation and modelling. The book provides a scientific treatment of the subject for researchers or students in Materials Science, Metallurgy and related disciplines, who require a more detailed coverage than is found in textbooks on physical metallurgy, and a more coherent treatment than will be found in the many conference proceedings and review articles.


The Nature and Behavior of Grain Boundaries

The Nature and Behavior of Grain Boundaries

Author: Anning Hu

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 441

ISBN-13: 1475701810

DOWNLOAD EBOOK

In view of the dramatically increased interest in the study of grain boundaries during the past few years, the Physical Metal lurgy Committee of The Institute of Metals Division of The Metal lurgical Society, AIME, sponsored a four-session symposium on the NATURE AND BEHAVIOR OF GRAIN BOUNDARIES, at the TMS-AIME Fall Meeting in Detroit, Michigan, October 18-19, 1971. The main ob jectives of this symposium were to examine the more recent develop ments, theoretical and experimental, in our understanding of grain boundaries, and to stimulate further studies in these and related areas. This volume contains most of the papers presented at the Symposium. It is regrettable that space limitations allow the inclusion of only four of the unsolicited papers, in addition to thirteen invited papers. The papers are grouped into three sections according to their major content: STRUCTURE OF GRAIN BOUNDARIES, ENERGETICS OF GRAIN BOUNDARIES, and GRAIN BOUNDARY MOTION AND RELATED PHENOMENA. Grain boundaries, or crystal interfaces, have been of both academic and practical interest for many years. An early seminar on "Metal Interfaces" was documented in 1952 by ASM. The Fourth Metallurgical Colloquium held in France, 1960, had a broad coverage on "Properties of Grain Boundaries". More recently the Australian Institute of Metals sponsored a conference on interfaces, with the proceedings being published by Butterworths in 1969.


Grain Boundaries

Grain Boundaries

Author: Louisette Priester

Publisher: Springer Science & Business Media

Published: 2012-11-28

Total Pages: 458

ISBN-13: 9400749694

DOWNLOAD EBOOK

Grain boundaries are a main feature of crystalline materials. They play a key role in determining the properties of materials, especially when grain size decreases and even more so with the current improvements of processing tools and methods that allow us to control various elements in a polycrystal. This book presents the theoretical basis of the study of grain boundaries and aims to open up new lines of research in this area. The treatment is light on mathematical approaches while emphasizing practical examples; the issues they raise are discussed with reference to theories. The general approach of the book has two main goals: to lead the reader from the concept of ‘ideal’ to ‘real’ grain boundaries; to depart from established knowledge and address the opportunities emerging through "grain boundary engineering", the control of morphological and crystallographic features that affect material properties. The book is divided in three parts: I ‘From interganular order to disorder’ deals with the concept of the perfect grain boundary, at equilibrium, and questions the maintenance of its crystalline state. II ‘From the ideal to the real grain boundary’ deals with the concept of the faulted grain boundary. It attempts to reveal the influence of the grain boundary structure on its defects, their formation and their accommodation. III ‘From free to constrained grain boundaries’ is devoted to grain boundary ensembles starting from the triple junction (the elemental configuration) to real grain boundary networks in polycrystals This part covers a new and topical development in the field. It presents for the first time an avenue for researchers working on macroscopic aspects, to approach the scale of description of grain boundaries. Audience: graduate students, researchers and engineers in Materials Science and all those scientists pursuing grain boundary engineering in order to improve materials performance.


Grain Boundary Migration in Metals

Grain Boundary Migration in Metals

Author: Gunter Gottstein

Publisher: CRC Press

Published: 1999-06-17

Total Pages: 454

ISBN-13: 9780849382222

DOWNLOAD EBOOK

The behavior of adjacent materials at the boundary where they meet is an essential aspect of creating new engineering materials. Grain Boundary Migration in Metals is an authoritative account of the physics of grain boundary motion, written by two highly respected researchers. They provide a comprehensive overview of current knowledge regarding the migration process and how it affects microstructure evolution, focusing their treatment exclusively on the properties and behavior of grain boundaries with well defined geometry and crystallography. With their emphasis on applications-such as the characterization of microstructure and texture, recrystallization, and grain growth-the authors effectively fill the gap between the physics of grain boundary motion and its engineering practicality. The need for better microstructural design motivates permanent thrust for research in the field, and continued rapid progress appears inevitable. Grain Boundary Migration in Metals provides a solid foundation in the phenomena and serves as a valuable reference for professionals in materials science, solid state physics, and any industry engaged in metals production and the heat treatment of metals and alloys.


Physical Foundations of Materials Science

Physical Foundations of Materials Science

Author: Günter Gottstein

Publisher: Springer Science & Business Media

Published: 2013-03-09

Total Pages: 511

ISBN-13: 3662092913

DOWNLOAD EBOOK

In this vivid and comprehensible introduction to materials science, the author expands the modern concepts of metal physics to formulate basic theory applicable to other engineering materials, such as ceramics and polymers. Written for engineering students and working engineers with little previous knowledge of solid-state physics, this textbook enables the reader to study more specialized and fundamental literature of materials science. Dozens of illustrative photographs, many of them transmission electron microscopy images, plus line drawings, aid developing a firm appreciation of this complex topic. Hard-to-grasp terms such as "textures" are lucidly explained - not only the phenomenon itself, but also its consequences for the material properties. This excellent book makes materials science more transparent.


Grain Boundary Controlled Properties of Fine Ceramics

Grain Boundary Controlled Properties of Fine Ceramics

Author: Kozo Ishizaki

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 313

ISBN-13: 9401118787

DOWNLOAD EBOOK

Selected papers presented at the International Workshop on Fine Ceramics 92, Materials Processing and Design through Better Control of Grain Boundaries: Emphasizing Fine Ceramics, held in Nagoya, Japan, 12-13 March 1992.


Magnesium Technology 2022

Magnesium Technology 2022

Author: Petra Maier

Publisher: Springer

Published: 2023-02-20

Total Pages: 0

ISBN-13: 9783030925352

DOWNLOAD EBOOK

The Magnesium Technology Symposium at the TMS Annual Meeting & Exhibition is one of the largest yearly gatherings of magnesium specialists in the world. Papers represent all aspects of the field, ranging from primary production to applications and recycling. Moreover, papers explore everything from basic research findings to industrialization. Magnesium Technology 2022 is a definitive reference that covers a broad spectrum of current topics, including novel extraction techniques; primary production; alloys and their production; integrated computational materials engineering; thermodynamics and kinetics; plasticity mechanisms; cast products and processing; wrought products and processing; forming, joining, and machining; corrosion and surface finishing; fatigue and fracture; dynamic response; structural applications; degradation and biomedical applications; emerging applications; additive manufacturing of powders; and recycling, ecological issues, and life cycle analysis.