This work uses various model frameworks to study the evolution of equilibria in an open loop evolving economy in which the model characteristics evolve without any directional restrictions except for continuity. Applying mathematical methods, it is shown that equilibria can always be adapted in a piecewise gradual, non bang-bang way.
This book brings together the author's pioneering work, written over the last twenty years, on the use of differential methods in general equilibrium theory.
The award-winning The New Palgrave Dictionary of Economics, 2nd edition is now available as a dynamic online resource. Consisting of over 1,900 articles written by leading figures in the field including Nobel prize winners, this is the definitive scholarly reference work for a new generation of economists. Regularly updated! This product is a subscription based product.
Introduces readers to the fundamentals and applications of variational formulations in mechanics Nearly 40 years in the making, this book provides students with the foundation material of mechanics using a variational tapestry. It is centered around the variational structure underlying the Method of Virtual Power (MVP). The variational approach to the modeling of physical systems is the preferred approach to address complex mathematical modeling of both continuum and discrete media. This book provides a unified theoretical framework for the construction of a wide range of multiscale models. Introduction to the Variational Formulation in Mechanics: Fundamentals and Applications enables readers to develop, on top of solid mathematical (variational) bases, and following clear and precise systematic steps, several models of physical systems, including problems involving multiple scales. It covers: Vector and Tensor Algebra; Vector and Tensor Analysis; Mechanics of Continua; Hyperelastic Materials; Materials Exhibiting Creep; Materials Exhibiting Plasticity; Bending of Beams; Torsion of Bars; Plates and Shells; Heat Transfer; Incompressible Fluid Flow; Multiscale Modeling; and more. A self-contained reader-friendly approach to the variational formulation in the mechanics Examines development of advanced variational formulations in different areas within the field of mechanics using rather simple arguments and explanations Illustrates application of the variational modeling to address hot topics such as the multiscale modeling of complex material behavior Presentation of the Method of Virtual Power as a systematic tool to construct mathematical models of physical systems gives readers a fundamental asset towards the architecture of even more complex (or open) problems Introduction to the Variational Formulation in Mechanics: Fundamentals and Applications is a ideal book for advanced courses in engineering and mathematics, and an excellent resource for researchers in engineering, computational modeling, and scientific computing.
The concept of general equilibrium, one of the central components of economic theory, explains the behavior of supply, demand, and prices by showing that supply and demand exist in balance through pricing mechanisms. The mathematical tools and properties for this theory have developed over time to accommodate and incorporate developments in economic theory, from multiple markets and economic agents to theories of production. Yves Balasko offers an extensive, up-to-date look at the standard theory of general equilibrium, to which he has been a major contributor. This book explains how the equilibrium manifold approach can be usefully applied to the general equilibrium model, from basic consumer theory and exchange economies to models with private ownership of production. Balasko examines properties of the standard general equilibrium model that are beyond traditional existence and optimality. He applies the theory of smooth manifolds and mappings to the multiplicity of equilibrium solutions and related discontinuities of market prices. The economic concepts and differential topology methods presented in this book are accessible, clear, and relevant, and no prior knowledge of economic theory is necessary. General Equilibrium Theory of Value offers a comprehensive foundation for the most current models of economic theory and is ideally suited for graduate economics students, advanced undergraduates in mathematics, and researchers in the field.
The first of three parts comprising Volume 54, the proceedings of the Summer Research Institute on Differential Geometry, held at the University of California, Los Angeles, July 1990 (ISBN for the set is 0-8218-1493-1). Part 1 begins with a problem list by S.T. Yau, successor to his 1980 list ( Sem