Turbulent Flows

Turbulent Flows

Author: G. Biswas

Publisher: CRC Press

Published: 2002

Total Pages: 478

ISBN-13: 9780849310140

DOWNLOAD EBOOK

This book allows readers to tackle the challenges of turbulent flow problems with confidence. It covers the fundamentals of turbulence, various modeling approaches, and experimental studies. The fundamentals section includes isotropic turbulence and anistropic turbulence, turbulent flow dynamics, free shear layers, turbulent boundary layers and plumes. The modeling section focuses on topics such as eddy viscosity models, standard K-E Models, Direct Numerical Stimulation, Large Eddy Simulation, and their applications. The measurement of turbulent fluctuations experiments in isothermal and stratified turbulent flows are explored in the experimental methods section. Special topics include modeling of near wall turbulent flows, compressible turbulent flows, and more.


Mathematical and Numerical Foundations of Turbulence Models and Applications

Mathematical and Numerical Foundations of Turbulence Models and Applications

Author: Tomás Chacón Rebollo

Publisher: Springer

Published: 2014-06-17

Total Pages: 530

ISBN-13: 1493904558

DOWNLOAD EBOOK

With applications to climate, technology, and industry, the modeling and numerical simulation of turbulent flows are rich with history and modern relevance. The complexity of the problems that arise in the study of turbulence requires tools from various scientific disciplines, including mathematics, physics, engineering and computer science. Authored by two experts in the area with a long history of collaboration, this monograph provides a current, detailed look at several turbulence models from both the theoretical and numerical perspectives. The k-epsilon, large-eddy simulation and other models are rigorously derived and their performance is analyzed using benchmark simulations for real-world turbulent flows. Mathematical and Numerical Foundations of Turbulence Models and Applications is an ideal reference for students in applied mathematics and engineering, as well as researchers in mathematical and numerical fluid dynamics. It is also a valuable resource for advanced graduate students in fluid dynamics, engineers, physical oceanographers, meteorologists and climatologists.


New Approaches in Modeling Multiphase Flows and Dispersion in Turbulence, Fractal Methods and Synthetic Turbulence

New Approaches in Modeling Multiphase Flows and Dispersion in Turbulence, Fractal Methods and Synthetic Turbulence

Author: F.C.G.A. Nicolleau

Publisher: Springer Science & Business Media

Published: 2011-10-29

Total Pages: 159

ISBN-13: 940072506X

DOWNLOAD EBOOK

This book contains a collection of the main contributions from the first five workshops held by Ercoftac Special Interest Group on Synthetic Turbulence Models (SIG42. It is intended as an illustration of the sig’s activities and of the latest developments in the field. This volume investigates the use of Kinematic Simulation (KS) and other synthetic turbulence models for the particular application to environmental flows. This volume offers the best syntheses on the research status in KS, which is widely used in various domains, including Lagrangian aspects in turbulence mixing/stirring, particle dispersion/clustering, and last but not least, aeroacoustics. Flow realizations with complete spatial, and sometime spatio-temporal, dependency, are generated via superposition of random modes (mostly spatial, and sometime spatial and temporal, Fourier modes), with prescribed constraints such as: strict incompressibility (divergence-free velocity field at each point), high Reynolds energy spectrum. Recent improvements consisted in incorporating linear dynamics, for instance in rotating and/or stably-stratified flows, with possible easy generalization to MHD flows, and perhaps to plasmas. KS for channel flows have also been validated. However, the absence of "sweeping effects" in present conventional KS versions is identified as a major drawback in very different applications: inertial particle clustering as well as in aeroacoustics. Nevertheless, this issue was addressed in some reference papers, and merits to be revisited in the light of new studies in progress.


Engineering Turbulence Modelling and Experiments 6

Engineering Turbulence Modelling and Experiments 6

Author: Wolfgang Rodi

Publisher: Elsevier

Published: 2005-05-05

Total Pages: 1011

ISBN-13: 0080530958

DOWNLOAD EBOOK

Proceedings of the world renowned ERCOFTAC (International Symposium on Engineering Turbulence Modelling and Measurements).The proceedings include papers dealing with the following areas of turbulence:·Eddy-viscosity and second-order RANS models ·Direct and large-eddy simulations and deductions for conventional modelling ·Measurement and visualization techniques, experimental studies ·Turbulence control ·Transition and effects of curvature, rotation and buoyancy on turbulence ·Aero-acoustics ·Heat and mass transfer and chemically reacting flows ·Compressible flows, shock phenomena ·Two-phase flows ·Applications in aerospace engineering, turbomachinery and reciprocating engines, industrial aerodynamics and wind engineering, and selected chemical engineering problems Turbulence remains one of the key issues in tackling engineering flow problems. These problems are solved more and more by CFD analysis, the reliability of which depends strongly on the performance of the turbulence models employed. Successful simulation of turbulence requires the understanding of the complex physical phenomena involved and suitable models for describing the turbulent momentum, heat and mass transfer. For the understanding of turbulence phenomena, experiments are indispensable, but they are equally important for providing data for the development and testing of turbulence models and hence for CFD software validation. As in other fields of Science, in the rapidly developing discipline of turbulence, swift progress can be achieved only by keeping up to date with recent advances all over the world and by exchanging ideas with colleagues active in related fields.


Turbulence Modelling Approaches

Turbulence Modelling Approaches

Author: Konstantin Volkov

Publisher: BoD – Books on Demand

Published: 2017-07-26

Total Pages: 252

ISBN-13: 9535133497

DOWNLOAD EBOOK

Accurate prediction of turbulent flows remains a challenging task despite considerable work in this area and the acceptance of CFD as a design tool. The quality of the CFD calculations of the flows in engineering applications strongly depends on the proper prediction of turbulence phenomena. Investigations of flow instability, heat transfer, skin friction, secondary flows, flow separation, and reattachment effects demand a reliable modelling and simulation of the turbulence, reliable methods, accurate programming, and robust working practices. The current scientific status of simulation of turbulent flows as well as some advances in computational techniques and practical applications of turbulence research is reviewed and considered in the book.


Multiscale And Multiresolution Approaches In Turbulence

Multiscale And Multiresolution Approaches In Turbulence

Author: Pierre Sagaut

Publisher: World Scientific

Published: 2006-06-19

Total Pages: 356

ISBN-13: 1908979879

DOWNLOAD EBOOK

This unique book gives a general unified presentation of the use of the multiscale/multiresolution approaches in the field of turbulence. The coverage ranges from statistical models developed for engineering purposes to multiresolution algorithms for the direct computation of turbulence. It provides the only available up-to-date reviews dealing with the latest and most advanced turbulence models (including LES, VLES, hybrid RANS/LES, DES) and numerical strategies.The book aims at providing the reader with a comprehensive description of modern strategies for turbulent flow simulation, ranging from turbulence modeling to the most advanced multilevel numerical methods./a


Turbulent Flows

Turbulent Flows

Author: Jean Piquet

Publisher: Springer Science & Business Media

Published: 2001-03-26

Total Pages: 778

ISBN-13: 9783540654117

DOWNLOAD EBOOK

obtained are still severely limited to low Reynolds numbers (about only one decade better than direct numerical simulations), and the interpretation of such calculations for complex, curved geometries is still unclear. It is evident that a lot of work (and a very significant increase in available computing power) is required before such methods can be adopted in daily's engineering practice. I hope to l"Cport on all these topics in a near future. The book is divided into six chapters, each· chapter in subchapters, sections and subsections. The first part is introduced by Chapter 1 which summarizes the equations of fluid mechanies, it is developed in C~apters 2 to 4 devoted to the construction of turbulence models. What has been called "engineering methods" is considered in Chapter 2 where the Reynolds averaged equations al"C established and the closure problem studied (§1-3). A first detailed study of homogeneous turbulent flows follows (§4). It includes a review of available experimental data and their modeling. The eddy viscosity concept is analyzed in §5 with the l"Csulting ~alar-transport equation models such as the famous K-e model. Reynolds stl"Css models (Chapter 4) require a preliminary consideration of two-point turbulence concepts which are developed in Chapter 3 devoted to homogeneous turbulence. We review the two-point moments of velocity fields and their spectral transforms (§ 1), their general dynamics (§2) with the particular case of homogeneous, isotropie turbulence (§3) whel"C the so-called Kolmogorov's assumptions are discussed at length.


Simulation of Turbulent Flows with and without Combustion with Emphasis on the Impact of Coherent Structures on the Turbulent Mixing

Simulation of Turbulent Flows with and without Combustion with Emphasis on the Impact of Coherent Structures on the Turbulent Mixing

Author: Cunha Galeazzo, Flavio Cesar

Publisher: KIT Scientific Publishing

Published: 2016-10-14

Total Pages: 258

ISBN-13: 3731504081

DOWNLOAD EBOOK

The analysis of turbulent mixing in complex turbulent flows is a challenging task. The effective mixing of entrained fluids to a molecular level is a vital part of the dynamics of turbulent flows, especially when combustion is involved. The work has shown the limitations of the steady-state simulations and acknowledged the need of applying high-fidelity unsteady methods for the calculation of flows with pronounced unsteadiness promoted by large-scale coherent structures or other sources.


Advanced Approaches in Turbulence

Advanced Approaches in Turbulence

Author: Paul Durbin

Publisher: Elsevier

Published: 2021-07-24

Total Pages: 554

ISBN-13: 0128208902

DOWNLOAD EBOOK

Advanced Approaches in Turbulence: Theory, Modeling, Simulation and Data Analysis for Turbulent Flows focuses on the updated theory, simulation and data analysis of turbulence dealing mainly with turbulence modeling instead of the physics of turbulence. Beginning with the basics of turbulence, the book discusses closure modeling, direct simulation, large eddy simulation and hybrid simulation. The book also covers the entire spectrum of turbulence models for both single-phase and multi-phase flows, as well as turbulence in compressible flow. Turbulence modeling is very extensive and continuously updated with new achievements and improvements of the models. Modern advances in computer speed offer the potential for elaborate numerical analysis of turbulent fluid flow while advances in instrumentation are creating large amounts of data. This book covers these topics in great detail. - Covers the fundamentals of turbulence updated with recent developments - Focuses on hybrid methods such as DES and wall-modeled LES - Gives an updated treatment of numerical simulation and data analysis