The ability of cells to sense and respond to changes in oxygenation underlies a multitude of developmental, physiological, and pathological processes. This volume provides a comprehensive compendium of experimental approaches to the study of oxygen sensing in 48 chapters that are written by leaders in their fields.
This book represents an updated review of the physiology of the carotid body chemoreceptors. It contains results in the topics at the frontiers of future developments in O2-sensing in chemoreceptor cells. Additionally, this volume provides data from studies carried out in other O2-sensing tissues including pulmonary vasculature and erythropoietin producing cells. It is a prime source of information and a guideline for arterial chemoreception researchers.
This presentation describes various aspects of the regulation of tissue oxygenation, including the roles of the circulatory system, respiratory system, and blood, the carrier of oxygen within these components of the cardiorespiratory system. The respiratory system takes oxygen from the atmosphere and transports it by diffusion from the air in the alveoli to the blood flowing through the pulmonary capillaries. The cardiovascular system then moves the oxygenated blood from the heart to the microcirculation of the various organs by convection, where oxygen is released from hemoglobin in the red blood cells and moves to the parenchymal cells of each tissue by diffusion. Oxygen that has diffused into cells is then utilized in the mitochondria to produce adenosine triphosphate (ATP), the energy currency of all cells. The mitochondria are able to produce ATP until the oxygen tension or PO2 on the cell surface falls to a critical level of about 4–5 mm Hg. Thus, in order to meet the energetic needs of cells, it is important to maintain a continuous supply of oxygen to the mitochondria at or above the critical PO2 . In order to accomplish this desired outcome, the cardiorespiratory system, including the blood, must be capable of regulation to ensure survival of all tissues under a wide range of circumstances. The purpose of this presentation is to provide basic information about the operation and regulation of the cardiovascular and respiratory systems, as well as the properties of the blood and parenchymal cells, so that a fundamental understanding of the regulation of tissue oxygenation is achieved.
A rigorous, high-yield review for the new ABA Part 1: BASIC Examination The year 2014 marks the beginning of a new phase in board certification for anesthesiology residents in the United States. The Part 1 exam is now split into two written examinations: Basic and Advanced. Anesthesiology. Residents who are unable to pass the Basic examination will not be allowed to finish their training. That's why this book is a true must read for every anesthesiology resident. It is the single best way to take the stress out of this make-or-break exam, focus your study on nearly 200 must-know topics found on the board exam outline, and identify your areas of strength and weakness. Written by program directors with many years of board examination advising experience, Anesthesiology Core Review Part One: BASIC Exam is designed to be the cornerstone of your study preparation. Each chapter of Anesthesiology Core Review succinctly summarizes key concepts in basic science and clinical anesthesia practice. Space is conveniently provided throughout the book to add notes from other study resources. Anesthesiology Core Review Part One: BASIC Exam is logical divided into four sections: Basic Science Clinical Sciences Organ-Based Sciences Special Issues in Anesthesiology (covering important topics such as professionalism and licensure, ethics, and patient safety) With its expert authorship and concise yet thorough coverage, Anesthesiology Core Review Part One: BASIC Exam is biggest step you can take to assure effective preparation for the new ABA BASIC Examination.
Arterial chemoreceptors are unique structures which continuously monitor changes in arterial blood oxygen, carbon dioxide, glucose, and acid. Alterations in these gases are almost instantaneously sensed by arterial chemoreceptors and relayed into a physiological response which restores blood homeostasis. Arterial Chemoreception contains updated material regarding the physiology of the primary arterial chemoreceptor; the carotid body. Moreover, this book also explores tantalizing evidence regarding the contribution of the aortic bodies, chromaffin cells, lung neuroepithelial bodies, and brainstem areas involved in monitoring changes in blood gases. Furthermore this collection includes data showing the critical importance of these chemoreceptors in the pathophysiology of human disease and possible therapeutic treatments. This book is a required text for any researcher in the field of arterial chemoreception for years to come. It is also a critical text for physicians searching for bench-to-bedside treatments for heart failure, sleep apnea, and pulmonary hypertension.
The book provides a comprehensive and up-to-date account of the information available on the morphological, physiological and evolutionary aspects of specialized cells distributed within the epithelia of the airways in the vertebrates. A lot of work has been done on the cell and molecular biology of these cells which are regarded as as oxygen recep
Anesthesia for Otolaryngologic Surgery offers a comprehensive synopsis of the anesthetic management options for otolaryngologic and bronchoscopic procedures. Authored by world authorities in the fields of anesthesiology and otolaryngology, both theoretical concepts and practical issues are addressed in detail, providing literature-based evidence wherever available and offering expert clinical opinion where rigorous scientific evidence is lacking. A full chapter is dedicated to every common surgical ENT procedure, as well as less common procedures such as face transplantation. Clinical chapters are enriched with case descriptions, making the text applicable to everyday practice. Chapters are also enhanced by numerous illustrations and recommended anesthetic management plans, as well as hints and tips that draw on the authors' extensive experience. Comprehensively reviewing the whole field, Anesthesia for Otolaryngologic Surgery is an invaluable resource for every clinician involved in the care of ENT surgical patients, including anesthesiologists, otolaryngologists and pulmonologists.
The clinical practice of anesthesia has undergone many advances in the past few years, making this the perfect time for a new state-of-the-art anesthesia textbook for practitioners and trainees. The goal of this book is to provide a modern, clinically focused textbook giving rapid access to comprehensive, succinct knowledge from experts in the field. All clinical topics of relevance to anesthesiology are organized into 29 sections consisting of more than 180 chapters. The print version contains 166 chapters that cover all of the essential clinical topics, while an additional 17 chapters on subjects of interest to the more advanced practitioner can be freely accessed at www.cambridge.org/vacanti. Newer techniques such as ultrasound nerve blocks, robotic surgery and transesophageal echocardiography are included, and numerous illustrations and tables assist the reader in rapidly assimilating key information. This authoritative text is edited by distinguished Harvard Medical School faculty, with contributors from many of the leading academic anesthesiology departments in the United States and an introduction from Dr S. R. Mallampati. This book is your essential companion when preparing for board review and recertification exams and in your daily clinical practice.