The Boundary Element Method for Plate Analysis

The Boundary Element Method for Plate Analysis

Author: John T. Katsikadelis

Publisher: Elsevier

Published: 2014-07-16

Total Pages: 345

ISBN-13: 0124167446

DOWNLOAD EBOOK

Boundary Element Method for Plate Analysis offers one of the first systematic and detailed treatments of the application of BEM to plate analysis and design. Aiming to fill in the knowledge gaps left by contributed volumes on the topic and increase the accessibility of the extensive journal literature covering BEM applied to plates, author John T. Katsikadelis draws heavily on his pioneering work in the field to provide a complete introduction to theory and application. Beginning with a chapter of preliminary mathematical background to make the book a self-contained resource, Katsikadelis moves on to cover the application of BEM to basic thin plate problems and more advanced problems. Each chapter contains several examples described in detail and closes with problems to solve. Presenting the BEM as an efficient computational method for practical plate analysis and design, Boundary Element Method for Plate Analysis is a valuable reference for researchers, students and engineers working with BEM and plate challenges within mechanical, civil, aerospace and marine engineering. - One of the first resources dedicated to boundary element analysis of plates, offering a systematic and accessible introductory to theory and application - Authored by a leading figure in the field whose pioneering work has led to the development of BEM as an efficient computational method for practical plate analysis and design - Includes mathematical background, examples and problems in one self-contained resource


The Boundary Element Method for Plate Analysis

The Boundary Element Method for Plate Analysis

Author: John T. Katsikadelis

Publisher: Academic Press

Published: 2017-10-30

Total Pages: 344

ISBN-13: 9780128101124

DOWNLOAD EBOOK

Boundary Element Method for Plate Analysis offers one of the first systematic and detailed treatments of the application of BEM to plate analysis and design. Aiming to fill in the knowledge gaps left by contributed volumes on the topic and increase the accessibility of the extensive journal literature covering BEM applied to plates, author John T. Katsikadelis draws heavily on his pioneering work in the field to provide a complete introduction to theory and application. Beginning with a chapter of preliminary mathematical background to make the book a self-contained resource, Katsikadelis moves on to cover the application of BEM to basic thin plate problems and more advanced problems. Each chapter contains several examples described in detail and closes with problems to solve. Presenting the BEM as an efficient computational method for practical plate analysis and design, Boundary Element Method for Plate Analysis is a valuable reference for researchers, students and engineers working with BEM and plate challenges within mechanical, civil, aerospace and marine engineering. One of the first resources dedicated to boundary element analysis of plates, offering a systematic and accessible introductory to theory and application Authored by a leading figure in the field whose pioneering work has led to the development of BEM as an efficient computational method for practical plate analysis and design Includes mathematical background, examples and problems in one self-contained resource


Buckling and Post Buckling Structures

Buckling and Post Buckling Structures

Author: B. G. Falzon

Publisher: Imperial College Press

Published: 2008

Total Pages: 526

ISBN-13: 1848162308

DOWNLOAD EBOOK

This book provides an in-depth treatment of the study of the stability of engineering structures. Contributions from internationally recognized leaders in the field ensure a wide coverage of engineering disciplines in which structural stability is of importance, in particular the analytical and numerical modelling of structural stability applied to aeronautical, civil, marine and offshore structures. The results from a number of comprehensive experimental test programs are also presented, thus enhancing our understanding of stability phenomena as well as validating the analytical and computational solution schemes presented. A variety of structural materials are investigated with special emphasis on carbon-fibre composites, which are being increasingly utilized in weight-critical structures. Instabilities at the meso- and micro-scales are also discussed. This book will be particularly relevant to professional engineers, graduate students and researchers interested in structural stability.


Boundary Element Analysis

Boundary Element Analysis

Author: Mohammed Ameen

Publisher: CRC Press

Published: 2001

Total Pages: 288

ISBN-13: 9780849310010

DOWNLOAD EBOOK

Boundary Element Analysis: Theory and Programming introduces the theory behind the boundary element method and its computer applications. The author uses Cartesian tensor notation throughout the book and includes the steps involved in deriving many of the equations. The text includes computer programs in Fortran 77 for elastostatic, plate bending, and free and forced vibration problems with detailed descriptions of the code.


The Scaled Boundary Finite Element Method

The Scaled Boundary Finite Element Method

Author: John P. Wolf

Publisher: John Wiley & Sons

Published: 2003-03-14

Total Pages: 398

ISBN-13: 9780471486824

DOWNLOAD EBOOK

A novel computational procedure called the scaled boundary finite-element method is described which combines the advantages of the finite-element and boundary-element methods : Of the finite-element method that no fundamental solution is required and thus expanding the scope of application, for instance to anisotropic material without an increase in complexity and that singular integrals are avoided and that symmetry of the results is automatically satisfied. Of the boundary-element method that the spatial dimension is reduced by one as only the boundary is discretized with surface finite elements, reducing the data preparation and computational efforts, that the boundary conditions at infinity are satisfied exactly and that no approximation other than that of the surface finite elements on the boundary is introduced. In addition, the scaled boundary finite-element method presents appealing features of its own : an analytical solution inside the domain is achieved, permitting for instance accurate stress intensity factors to be determined directly and no spatial discretization of certain free and fixed boundaries and interfaces between different materials is required. In addition, the scaled boundary finite-element method combines the advantages of the analytical and numerical approaches. In the directions parallel to the boundary, where the behaviour is, in general, smooth, the weighted-residual approximation of finite elements applies, leading to convergence in the finite-element sense. In the third (radial) direction, the procedure is analytical, permitting e.g. stress-intensity factors to be determined directly based on their definition or the boundary conditions at infinity to be satisfied exactly. In a nutshell, the scaled boundary finite-element method is a semi-analytical fundamental-solution-less boundary-element method based on finite elements. The best of both worlds is achieved in two ways: with respect to the analytical and numerical methods and with respect to the finite-element and boundary-element methods within the numerical procedures. The book serves two goals: Part I is an elementary text, without any prerequisites, a primer, but which using a simple model problem still covers all aspects of the method and Part II presents a detailed derivation of the general case of statics, elastodynamics and diffusion.


Fast Multipole Boundary Element Method

Fast Multipole Boundary Element Method

Author: Yijun Liu

Publisher: Cambridge University Press

Published: 2009-08-24

Total Pages: 255

ISBN-13: 113947944X

DOWNLOAD EBOOK

The fast multipole method is one of the most important algorithms in computing developed in the 20th century. Along with the fast multipole method, the boundary element method (BEM) has also emerged as a powerful method for modeling large-scale problems. BEM models with millions of unknowns on the boundary can now be solved on desktop computers using the fast multipole BEM. This is the first book on the fast multipole BEM, which brings together the classical theories in BEM formulations and the recent development of the fast multipole method. Two- and three-dimensional potential, elastostatic, Stokes flow, and acoustic wave problems are covered, supplemented with exercise problems and computer source codes. Applications in modeling nanocomposite materials, bio-materials, fuel cells, acoustic waves, and image-based simulations are demonstrated to show the potential of the fast multipole BEM. Enables students, researchers, and engineers to learn the BEM and fast multipole method from a single source.


Static and Dynamic Analysis of Engineering Structures

Static and Dynamic Analysis of Engineering Structures

Author: Levon G. Petrosian

Publisher: John Wiley & Sons

Published: 2020-05-11

Total Pages: 528

ISBN-13: 1119592836

DOWNLOAD EBOOK

An authoritative guide to the theory and practice of static and dynamic structures analysis Static and Dynamic Analysis of Engineering Structures examines static and dynamic analysis of engineering structures for methodological and practical purposes. In one volume, the authors – noted engineering experts – provide an overview of the topic and review the applications of modern as well as classic methods of calculation of various structure mechanics problems. They clearly show the analytical and mechanical relationships between classical and modern methods of solving boundary value problems. The first chapter offers solutions to problems using traditional techniques followed by the introduction of the boundary element methods. The book discusses various discrete and continuous systems of analysis. In addition, it offers solutions for more complex systems, such as elastic waves in inhomogeneous media, frequency-dependent damping and membranes of arbitrary shape, among others. Static and Dynamic Analysis of Engineering Structures is filled with illustrative examples to aid in comprehension of the presented material. The book: Illustrates the modern methods of static and dynamic analysis of structures; Provides methods for solving boundary value problems of structural mechanics and soil mechanics; Offers a wide spectrum of applications of modern techniques and methods of calculation of static, dynamic and seismic problems of engineering design; Presents a new foundation model. Written for researchers, design engineers and specialists in the field of structural mechanics, Static and Dynamic Analysis of Engineering Structures provides a guide to analyzing static and dynamic structures, using traditional and advanced approaches with real-world, practical examples.


Stress Analysis by Boundary Element Methods

Stress Analysis by Boundary Element Methods

Author: J. Balaš

Publisher: Elsevier

Published: 2013-10-22

Total Pages: 699

ISBN-13: 148329174X

DOWNLOAD EBOOK

The boundary element method is an extremely versatile and powerful tool of computational mechanics which has already become a popular alternative to the well established finite element method. This book presents a comprehensive and up-to-date treatise on the boundary element method (BEM) in its applications to various fields of continuum mechanics such as: elastostatics, elastodynamics, thermoelasticity, micropolar elasticity, elastoplasticity, viscoelasticity, theory of plates and stress analysis by hybrid methods. The fundamental solution of governing differential equations, integral representations of the displacement and temperature fields, regularized integral representations of the stress field and heat flux, boundary integral equations and boundary integro-differential equations are derived. Besides the mathematical foundations of the boundary integral method, the book deals with practical applications of this method. Most of the applications concentrate mainly on the computational problems of fracture mechanics. The method has been found to be very efficient in stress-intensity factor computations. Also included are developments made by the authors in the boundary integral formulation of thermoelasticity, micropolar elasticity, viscoelasticity, plate theory, hybrid method in elasticity and solution of crack problems. The solution of boundary-value problems of thermoelasticity and micropolar thermoelasticity is formulated for the first time as the solution of pure boundary problems. A new unified formulation of general crack problems is presented by integro-differential equations.