This book discusses analytical tools for designing energy efficient and lightweight structures that embody the concept of tensegrity. The book provides both static and dynamic analysis of special tensegrity structural concepts, which are motivated by biological material architecture. This is the first book written to attempt to integrate structure and control design.
The word tensegrity results from the contraction of 'tensional' and 'integrity', a word created by Richard Buckminster Fuller. He went on to describe tensegrity structures as 'islands of compression in an ocean of tension', and René Motro has developed a comprehensive definition which is 'systems in a stable self equilibriated system comprising a discontinuous set of compressed components inside a continuum of tensioned components'. This publication represents the life work of a leading exponent of a revolutionary and exciting method of structural design.* Represents the life work of a leading exponent of a revolutionary and exciting method of structural design* Applicable to architecture as an established structural system, can also be applied to other fields* Design professionals will be able to design better structures. Interested non-professionals will experience the great pleasure of being able to say "I understand why the Hisshorn tower stands up"
Architects are constantly looking for new methods to create large indoor spaces unhindered by columns and other supports. Tensile and cable-strut structures are one method of producing such spaces. They also enable the creation of different shaped spaces allowing architects more scope for innovation. Free-standing Tension Structures: From Tensegrity Systems to Cable-strut Systems provides the background engineering needed to produce these wonderful structures. Providing a complete background to the underlying structural engineering theories of tensegrity, this book will prove invaluable for all architects and engineers working on tensile structures.
Tensegrity structures are pre-stressed systems of cables and bars in which no bar is connected to the other and the structure has no continuous rigid skeleton. This general introduction presents an original general method for the design of tensegrity structures, the first configurations of which were found by trial and error. The book begins with two-dimensional tensegrity structures, particularly tensegrity nets, tensegrity chains, tensegrity rings and tensegrity arches. These are then developed to original configurations of spatial tensegrity structures such as tensegrity slabs, primitive spatial tensegrity arches, and primitive tensegrity domes, as well as more elaborate spatial tensegrity structures such as tensegrity cylindrical shells, slim tensegrity domes, tensegrity vaults, and tensegrity caps. Presents a robust new approach to the design of tensegrity structures Extends tensegrity structures to new three-dimensional configurations Tensegrity Structures Design Methods suits structural, civil, and mechanical engineers and architects, as well as graduate students. Oren Vilnay is Professor Emeritus and was founder and head of the Department of Structural Engineering at Ben Gurion University Israel. He is also former head of the Structural Engineering Section at Technion—Israel Institute of Technology. Leon Chernin is Lecturer at the University of Dundee. He was granted a PhD in Structural Engineering from the Technion—Israel Institute of Technology. His research activities encompass both physical testing and numerical modelling.
Tensegrity structures are really intriguing: bars floating in the air, without any contact to a solid support, attached only by wires to other bars… that are also floating in the air! The aim of this work is to serve as an introduction to such an atypical kind of structure. It tries to explain everything about the controversial origins and polemic fatherhood; tensegrities from various fields, other than Architecture, structural principles, characteristics, advantages and weakness; precedent and current works and patents; and finally, some new proposals, proving that it is possible to find some applications to architectural and engineering purposes. In conclusion, this work tries to be a guide and reference to a new world of structural possibilities that is blooming and finding its path.
The emerging science of biotensegrity provides a fresh context for rethinking our understanding of human movement, but its complexities can be formidable. Biotensegrity: The Structural Basis of Life, Second edition - now with full color illustrations throughout - explores and explains the concept of biotensegrity and provides an understanding and appreciation of anatomy and physiology in the light of the latest research findings. The reader learns that biotensegrity is an evolving science which gives researchers, teachers, and practitioners across a wide range of specialisms, including bodyworkers and movement teachers, a deeper understanding of the structure and function of the human body. They are then able to develop clinical practice and skills in light of this understanding, leading to more effective therapeutic approaches, with the aim of improved client outcomes. The second edition provides expanded coverage of the developmental and therapeutic aspects of biotensegrity. Coverage now includes: A more thorough look at life's internal processes Closed kinematic chains as the new biomechanics Embryological development as an evolutionary process The human body as a constantly evolving system based on a set of unchanging principles Emergence, heterarchies, soft-matter and small-world networks A deeper look at what constitutes the therapeutic process
This book provides an in-depth, numerical investigation of tensegrity systems from a structural point of view, using the laws of fundamental mechanics for general pin-jointed systems with self-stressed mechanisms. Tensegrity structures have been known for decades, mostly as an art of form for monuments in architectural design. In Computational Modeling of Tensegrity Structures, Professor Buntara examines these formations, integrating perspectives from mechanics, robotics, and biology, emphasizing investigation of tensegrity structures for both inherent behaviors and their apparent ubiquity in nature. The author offers numerous examples and illustrative applications presented in detail and with relevant MATLAB codes. Combining a chapter on the analyses of tensegrity structures along with sections on computational modeling, design, and the latest applications of tensegrity structures, the book is ideal for R&D engineers and students working in a broad range of disciplines interested in structural design.
To facilitate a deeper understanding of tensegrity structures, this book focuses on their two key design problems: self-equilibrium analysis and stability investigation. In particular, high symmetry properties of the structures are extensively utilized. Conditions for self-equilibrium as well as super-stability of tensegrity structures are presented in detail. An analytical method and an efficient numerical method are given for self-equilibrium analysis of tensegrity structures: the analytical method deals with symmetric structures and the numerical method guarantees super-stability. Utilizing group representation theory, the text further provides analytical super-stability conditions for the structures that are of dihedral as well as tetrahedral symmetry. This book not only serves as a reference for engineers and scientists but is also a useful source for upper-level undergraduate and graduate students. Keeping this objective in mind, the presentation of the book is self-contained and detailed, with an abundance of figures and examples.
Following current trends toward development of novel materials and structures, this volume explores the concept of high-performance metamaterials and metastructures with extremal mechanical properties, inspired by tensegrity systems. The idea of extremal materials is applied here to cellular tensegrity lattices of various scales. Tensegrity systems have numerous advantages: they are lightweight, have a high stiffness-to-mass ratio, are prone to structural control, can be applied in smart and adaptive systems, and exhibit unusual mechanical properties. This study is focused on tensegrity lattices, whose inner architecture resembles that of cellular metamaterials, but which are aimed at civil engineering applications in non-material scales. It proposes a methodology for investigation of extremal mechanical properties of such systems, based on discrete and continuum approaches, including the discussion on scale effects. It proves that, similarly to tensegrity-based metamaterials, tensegrity metastructures are able to exhibit extremal mechanical behaviour. This book is directed to researchers and scientists working on metamaterials and tensegrity systems, developing energy-absorption solutions for building and transport industry. The findings described in this monograph can also be useful in other fields of applied sciences, such as civil engineering, robotics and material science.