Surfaces and Interfaces of Electronic Materials

Surfaces and Interfaces of Electronic Materials

Author: Leonard J. Brillson

Publisher: John Wiley & Sons

Published: 2012-06-26

Total Pages: 589

ISBN-13: 3527665722

DOWNLOAD EBOOK

An advanced level textbook covering geometric, chemical, and electronic structure of electronic materials, and their applications to devices based on semiconductor surfaces, metal-semiconductor interfaces, and semiconductor heterojunctions. Starting with the fundamentals of electrical measurements on semiconductor interfaces, it then describes the importance of controlling macroscopic electrical properties by atomic-scale techniques. Subsequent chapters present the wide range of surface and interface techniques available to characterize electronic, optical, chemical, and structural properties of electronic materials, including semiconductors, insulators, nanostructures, and organics. The essential physics and chemistry underlying each technique is described in sufficient depth with references to the most authoritative sources for more exhaustive discussions, while numerous examples are provided throughout to illustrate the applications of each technique. With its general reading lists, extensive citations to the text, and problem sets appended to all chapters, this is ideal for students of electrical engineering, physics and materials science. It equally serves as a reference for physicists, material science and electrical and electronic engineers involved in surface and interface science, semiconductor processing, and device modeling and design. This is a coproduction of Wiley and IEEE * Free solutions manual available for lecturers at www.wiley-vch.de/supplements/


Surfaces and Interfaces of Solids

Surfaces and Interfaces of Solids

Author: Hans Lüth

Publisher: Springer Science & Business Media

Published: 2013-11-27

Total Pages: 497

ISBN-13: 3662101599

DOWNLOAD EBOOK

"Surfaces and Interfaces of Solids" emphasizes both experimental and theoretical aspects of surface and interface physics. Beside the techniques of preparing well-defined solid surfaces and interfaces basic models for the description of structural, vibronic and electronic properties ofinterfaces are described, as well as fundamental aspects of adsorption and layer growth. Because of its importance for modern microelectronics special emphasis is placed on the electronic properties of semiconductorinterfaces and heterostructures. Experimental topics covering the basics of ultrahigh-vacuum technology, electron optics, surface spectroscopies and electrical interface characterization techniques are presented in the form of separate panels.


Semiconductor Surfaces and Interfaces

Semiconductor Surfaces and Interfaces

Author: Winfried Mönch

Publisher: Springer Science & Business Media

Published: 2013-04-17

Total Pages: 455

ISBN-13: 3662031345

DOWNLOAD EBOOK

Semiconductor Surfaces and Interfaces deals with structural and electronic properties of semiconductor surfaces and interfaces. The first part introduces the general aspects of space-charge layers, of clean-surface and adatom-included surfaces states, and of interface states. It is followed by a presentation of experimental results on clean and adatom-covered surfaces which are explained in terms of simple physical and chemical concepts and models. Where available, results of more refined calculations are considered. A final chapter is devoted to the band lineup at semiconductor interfaces.


Physics of Surfaces and Interfaces

Physics of Surfaces and Interfaces

Author: Harald Ibach

Publisher: Springer Science & Business Media

Published: 2006-11-18

Total Pages: 653

ISBN-13: 3540347100

DOWNLOAD EBOOK

This graduate-level textbook covers the major developments in surface sciences of recent decades, from experimental tricks and basic techniques to the latest experimental methods and theoretical understanding. It is unique in its attempt to treat the physics of surfaces, thin films and interfaces, surface chemistry, thermodynamics, statistical physics and the physics of the solid/electrolyte interface in an integral manner, rather than in separate compartments. It is designed as a handbook for the researcher as well as a study-text for graduate students. Written explanations are supported by 350 graphs and illustrations.


Electronic Structure of Disordered Alloys, Surfaces and Interfaces

Electronic Structure of Disordered Alloys, Surfaces and Interfaces

Author: Ilja Turek

Publisher: Springer Science & Business Media

Published: 1997

Total Pages: 340

ISBN-13: 9780792397984

DOWNLOAD EBOOK

An introduction to the study of basic electronic and magnetic properties of complex materials such as alloys, their surfaces, interfaces, and extended defects. Part I explores theoretical background, with chapters on the linear muffin-tin orbital method, Green function method, coherent potential approximation, self- consistency within atomic sphere approximation, and relativistic theory. Part II is devoted to applications including magnetic properties, numerical implementation, and interatomic interactions in alloys. Of interest to researchers in solid state theory, surface science, and computational materials research. Annotation copyrighted by Book News, Inc., Portland, OR.


Handbook of Surfaces and Interfaces of Materials, Five-Volume Set

Handbook of Surfaces and Interfaces of Materials, Five-Volume Set

Author: Hari Singh Nalwa

Publisher: Elsevier

Published: 2001-10-26

Total Pages: 1915

ISBN-13: 0080533825

DOWNLOAD EBOOK

This handbook brings together, under a single cover, all aspects of the chemistry, physics, and engineering of surfaces and interfaces of materials currently studied in academic and industrial research. It covers different experimental and theoretical aspects of surfaces and interfaces, their physical properties, and spectroscopic techniques that have been applied to a wide class of inorganic, organic, polymer, and biological materials. The diversified technological areas of surface science reflect the explosion of scientific information on surfaces and interfaces of materials and their spectroscopic characterization. The large volume of experimental data on chemistry, physics, and engineering aspects of materials surfaces and interfaces remains scattered in so many different periodicals, therefore this handbook compilation is needed.The information presented in this multivolume reference draws on two decades of pioneering research on the surfaces and interfaces of materials to offer a complete perspective on the topic. These five volumes-Surface and Interface Phenomena; Surface Characterization and Properties; Nanostructures, Micelles, and Colloids; Thin Films and Layers; Biointerfaces and Applications-provide multidisciplinary review chapters and summarize the current status of the field covering important scientific and technological developments made over past decades in surfaces and interfaces of materials and spectroscopic techniques with contributions from internationally recognized experts from all over the world. Fully cross-referenced, this book has clear, precise, and wide appeal as an essential reference source long due for the scientific community. The complete reference on the topic of surfaces and interfaces of materialsThe information presented in this multivolume reference draws on two decades of pioneering researchProvides multidisciplinary review chapters and summarizes the current status of the fieldCovers important scientific and technological developments made over past decades in surfaces and interfaces of materials and spectroscopic techniquesContributions from internationally recognized experts from all over the world


Solid Surfaces, Interfaces and Thin Films

Solid Surfaces, Interfaces and Thin Films

Author: Hans Lüth

Publisher: Springer Science & Business Media

Published: 2013-04-17

Total Pages: 566

ISBN-13: 3662043521

DOWNLOAD EBOOK

This book emphasises both experimental and theoretical aspects of surface, interface and thin film physics. Compa- red to the earlier editions, which bore the title "Surfaces and Interfaces of Solid Materials", the book now places more emphasis on thin films, including also their superconducting and ferromagnetic properties. The present 4th edition thus presents techniques of preparing well-defined solid surfaces and interfaces, fundamental aspects of adsorption and layer growth, as well as basic models for the descripti- on of structural, vibronic and electronic properties of sur- faces, interfaces and thin films. Because of their importan- ce for modern information technology, significant attention is paid to the electronic properties of semiconductor inter- faces and heterostructures. Collective phenomena , such as superconductivity and ferromagnetism, also feature promi- nently. Experimental sections covering essential measurement and preparation techniques are presented in separate panels.


Chemical Bonding at Surfaces and Interfaces

Chemical Bonding at Surfaces and Interfaces

Author: Anders Nilsson

Publisher: Elsevier

Published: 2011-08-11

Total Pages: 533

ISBN-13: 0080551912

DOWNLOAD EBOOK

Molecular surface science has made enormous progress in the past 30 years. The development can be characterized by a revolution in fundamental knowledge obtained from simple model systems and by an explosion in the number of experimental techniques. The last 10 years has seen an equally rapid development of quantum mechanical modeling of surface processes using Density Functional Theory (DFT). Chemical Bonding at Surfaces and Interfaces focuses on phenomena and concepts rather than on experimental or theoretical techniques. The aim is to provide the common basis for describing the interaction of atoms and molecules with surfaces and this to be used very broadly in science and technology. The book begins with an overview of structural information on surface adsorbates and discusses the structure of a number of important chemisorption systems. Chapter 2 describes in detail the chemical bond between atoms or molecules and a metal surface in the observed surface structures. A detailed description of experimental information on the dynamics of bond-formation and bond-breaking at surfaces make up Chapter 3. Followed by an in-depth analysis of aspects of heterogeneous catalysis based on the d-band model. In Chapter 5 adsorption and chemistry on the enormously important Si and Ge semiconductor surfaces are covered. In the remaining two Chapters the book moves on from solid-gas interfaces and looks at solid-liquid interface processes. In the final chapter an overview is given of the environmentally important chemical processes occurring on mineral and oxide surfaces in contact with water and electrolytes. - Gives examples of how modern theoretical DFT techniques can be used to design heterogeneous catalysts - This book suits the rapid introduction of methods and concepts from surface science into a broad range of scientific disciplines where the interaction between a solid and the surrounding gas or liquid phase is an essential component - Shows how insight into chemical bonding at surfaces can be applied to a range of scientific problems in heterogeneous catalysis, electrochemistry, environmental science and semiconductor processing - Provides both the fundamental perspective and an overview of chemical bonding in terms of structure, electronic structure and dynamics of bond rearrangements at surfaces


An Essential Guide to Electronic Material Surfaces and Interfaces

An Essential Guide to Electronic Material Surfaces and Interfaces

Author: Leonard J. Brillson

Publisher: John Wiley & Sons

Published: 2016-05-12

Total Pages: 320

ISBN-13: 1119027128

DOWNLOAD EBOOK

An Essential Guide to Electronic Material Surfaces and Interfaces is a streamlined yet comprehensive introduction that covers the basic physical properties of electronic materials, the experimental techniques used to measure them, and the theoretical methods used to understand, predict, and design them. Starting with the fundamental electronic properties of semiconductors and electrical measurements of semiconductor interfaces, this text introduces students to the importance of characterizing and controlling macroscopic electrical properties by atomic-scale techniques. The chapters that follow present the full range of surface and interface techniques now being used to characterize electronic, optical, chemical, and structural properties of electronic materials, including semiconductors, insulators, nanostructures, and organics. The essential physics and chemistry underlying each technique is described in sufficient depth for students to master the fundamental principles, with numerous examples to illustrate the strengths and limitations for specific applications. As well as references to the most authoritative sources for broader discussions, the text includes internet links to additional examples, mathematical derivations, tables, and literature references for the advanced student, as well as professionals in these fields. This textbook fills a gap in the existing literature for an entry-level course that provides the physical properties, experimental techniques, and theoretical methods essential for students and professionals to understand and participate in solid-state electronics, physics, and materials science research. An Essential Guide to Electronic Material Surfaces and Interfaces is an introductory-to-intermediate level textbook suitable for students of physics, electrical engineering, materials science, and other disciplines. It is essential reading for any student or professional engaged in surface and interface research, semiconductor processing, or electronic device design.


Chemistry of Functional Materials Surfaces and Interfaces

Chemistry of Functional Materials Surfaces and Interfaces

Author: Andrei Honciuc

Publisher: Elsevier

Published: 2021-03-08

Total Pages: 280

ISBN-13: 0128210591

DOWNLOAD EBOOK

Chemistry of Functional Materials Surfaces and Interfaces: Fundamentals and Applications gives a descriptive account of interfacial phenomena step-by-step, from simple to complex, to provide readers with a strong foundation of knowledge in interfacial materials chemistry. Many case studies are provided to give real-world examples of problems and their solutions, allowing readers to make the connection between fundamental understanding and applications. Emerging applications in nanomaterials and nanotechnology are also discussed. Throughout the book, the author explains the common interface and surface equations, models, methods, and applications in the creation of functional materials. The goal of Chemistry of Functional Materials Surfaces and Interfaces is to provide readers with the basic understanding of the common tools of surface and interface chemistry for application in materials science and nanotechnology. This book is suitable for researchers and practitioners in the disciplines of materials science and engineering and surface and interface chemistry. Includes numerous real-world examples and case studies throughout Addresses emerging applications of interfacial materials chemistry in nanomaterials and nanotechnology Provides the foundational concepts of surface and interfacial science with models, equation, and methods