Supersymmetric Higgs Pair Production at Hadron Colliders

Supersymmetric Higgs Pair Production at Hadron Colliders

Author:

Publisher:

Published: 2001

Total Pages:

ISBN-13:

DOWNLOAD EBOOK

We study the pair production of neutral Higgs bosons through gluon fusion at hadron colliders in the framework of the Minimal Supersymmetric Standard Model. We present analytical expressions for the relevant amplitudes, including both quark and squark loop contributions, and allowing for mixing between the superpartners of left- and right-handed quarks. Squark loop contributions can increase the cross section for the production of two CP--even Higgs bosons by more than two orders of magnitude, if the relevant trilinear soft breaking parameter is large and the mass of the lighter squark eigenstate is not too far above its current lower bound. In the region of large tan[beta], neutral Higgs boson pair production might even be observable in the 4b final state during the next run of the Tevatron collider.


Supersymmetric Higgs Boson Pair Production

Supersymmetric Higgs Boson Pair Production

Author:

Publisher:

Published: 1999

Total Pages:

ISBN-13:

DOWNLOAD EBOOK

We study the potential of hadron colliders in the search for the pair production of neutral Higgs bosons in the framework of the Minimal Supersymmetric Standard Model. We perform a detailed signal and background analysis, working out efficient kinematical cuts for the extraction of the signal. The important role of squark loop contributions to the signal is re-emphasized. If the signal is sufficiently enhanced by these contributions, it could even be observable at the next run of the upgraded Tevatron collider in the near future. At the LHC the pair production of light and heavy Higgs bosons might be detectable simultaneously.


SEARCHING FOR HIGGS BOSONS AND NEW PHYSICS AT HADRON COLLIDERS.

SEARCHING FOR HIGGS BOSONS AND NEW PHYSICS AT HADRON COLLIDERS.

Author:

Publisher:

Published: 2007

Total Pages:

ISBN-13:

DOWNLOAD EBOOK

The objectives of research activities in particle theory are predicting the production cross section and decay branching fractions of Higgs bosons and new particles at hadron colliders, developing techniques and computer software to discover these particles and to measure their properties, and searching for new phenomena and new interactions at the Fermilab Tevatron and the CERN Large Hadron Collider. The results of our project could lead to the discovery of Higgs bosons, new particles, and signatures for new physics, or we will be able to set meaningful limits on important parameters in particle physics. We investigated the the prospects for the discovery at the CERN Large Hadron Collider of Higgs bosons and supersymmetric particles. Promising results are found for the CP-odd pseudoscalar ($A^0$) and the heavier CP-even scalar ($H^0$) Higgs bosons with masses up to 800 GeV. Furthermore, we study properties of the lightest neutralino ($\chi^0$) and calculate its cosmological relic density in a supersymmetric $U(1)'$ model as well as the muon anomalous magnetic moment $a_\mu = (g_\mu - 2)/2$ in a supersymmetric $U(1)'$ model. We found that there are regions of the parameter space that can explain the experimental deviation of $a_\mu$ from the Standard Model calculation and yield an acceptable cold dark matter relic density without conflict with collider experimental constraints. % Recently, we presented a complete next-to-leading order (NLO) calculation for the total cross section of inclusive Higgs pair production via bottom-quark fusion ($b\bar{b} \to hh$) at the CERN Large Hadron Collider (LHC) in the Standard Model and the minimal supersymmetric model. We plan to predict the Higgs pair production rate and to study the trilinear coupling among the Higgs bosons. % In addition, we have made significant contributions in B physics, single top production, charged Higgs search at the Fermilab as well as in grid computing for both D0 and ATLAS.


Beyond Standard Model Collider Phenomenology of Higgs Physics and Supersymmetry

Beyond Standard Model Collider Phenomenology of Higgs Physics and Supersymmetry

Author: Marc Christopher Thomas

Publisher: Springer

Published: 2016-08-01

Total Pages: 113

ISBN-13: 3319434527

DOWNLOAD EBOOK

This thesis studies collider phenomenology of physics beyond the Standard Model at the Large Hadron Collider (LHC). It also explores in detail advanced topics related to Higgs boson and supersymmetry – one of the most exciting and well-motivated streams in particle physics. In particular, it finds a very large enhancement of multiple Higgs boson production in vector-boson scattering when Higgs couplings to gauge bosons differ from those predicted by the Standard Model. The thesis demonstrates that due to the loss of unitarity, the very large enhancement for triple Higgs boson production takes place. This is a truly novel finding. The thesis also studies the effects of supersymmetric partners of top and bottom quarks on the Higgs production and decay at the LHC, pointing for the first time to non-universal alterations for two main production processes of the Higgs boson at the LHC–vector boson fusion and gluon–gluon fusion. Continuing the exploration of Higgs boson and supersymmetry at the LHC, the thesis extends existing experimental analysis and shows that for a single decay channel the mass of the top quark superpartner below 175 GeV can be completely excluded, which in turn excludes electroweak baryogenesis in the Minimal Supersymmetric Model. This is a major new finding for the HEP community. This thesis is very clearly written and the introduction and conclusions are accessible to a wide spectrum of readers.


Electroweak Symmetry Breaking And New Physics At The Tev Scale

Electroweak Symmetry Breaking And New Physics At The Tev Scale

Author: Timothy L Barklow

Publisher: World Scientific

Published: 1997-05-05

Total Pages: 749

ISBN-13: 9814499072

DOWNLOAD EBOOK

This is an expanded version of the report by the Electroweak Symmetry Breaking and Beyond the Standard Model Working Group which was contributed to Particle Physics — Perspectives and Opportunities, a report of the Division of Particles and Fields Committee for Long Term Planning. One of the Working Group's primary goals was to study the phenomenology of electroweak symmetry breaking and attempt to quantify the “physics reach” of present and future colliders. Their investigations encompassed the Standard Model — with one doublet of Higgs scalars — and approaches to physics beyond the Standard Model. These include models of low-energy supersymmetry, dynamical electroweak symmetry breaking, and a variety of extensions of the Standard Model with new particles and interactions. The Working Group also considered signals of new physics in precision measurements arising from virtual processes and examined experimental issues associated with the study of electroweak symmetry breaking and the search for new physics at present and future hadron and lepton colliders.This volume represents an important contribution to the efforts being made to advance the frontiers of particle physics.


Searches for New Physics at Colliders

Searches for New Physics at Colliders

Author: My Phuong Thi Le

Publisher: Stanford University

Published: 2011

Total Pages: 277

ISBN-13:

DOWNLOAD EBOOK

The turning-on of the Large Hadron Collider is the momentous milestone in our quest for new physics beyond the Standard Model. Soon, we will be presented with the task of detecting, identifying, and studying the possibly large parameter space of the underlying model. In this thesis, we will look at some possible extensions to the SM, their signatures at colliders, and possible search strategies to explore the new physics in a model-independent way. In chapter 2, we study the extended neutral gauge sector of the Littlest Higgs model at the 500 GeV e+e- collider using the fermion pair production and Higgs associate production channel. We find that these channels can provide an accurate determination of the fundamental parameters and thus allows the verification of the little Higgs mechanism designed to cancel the Higgs mass quadratic divergence. In chapter 3, we study the ATLAS supersymmetry searches proposed for the 14 TeV pp collider using the $\sim$ 70k models of the phenomenological Minimal Supersymmetric Model (pMSSM) moldel set, that have survived many theoretical and experimental constraints. Since pMSSM does not make any simplifying assumptions about its SUSY-breaking mechanism at high scale, this encompasses a broad class of Supersymmetric models. We find that even though these searches were optimized mostly for mSUGRA signals, they are relatively robust in observing the more general pMSSM models. For the case of models in which squarks and gluinos have mass below 1 TeV, essentially all of these models ($> 99\%$) were observable in at least one of these searches, with 1 $fb^{-1}$ of integrated luminosity allowing for an uncertainty of 50\% in the SM background. We found that 0-lepton searches are the most powerful searches, while searches with 1-2 leptons do not have coverage as good as has been shown for mSUGRA. We then study possible reasons why a model could not be observed. These difficult models mostly include those with long-lived charginos which lead to small Missing Tranverse Energy (MET) and models with squeezed spectra which lead to soft jets that fail the jet cuts. In chapter 4, we study similar searches that have been carried out by ATLAS at the 7 TeV LHC. We found that systematic uncertainty again plays an important role in determining the coverage of the searches. This is especially true for searches with a large SM background, such as $n$-jet 0 lepton searches. We study the implication of a null result from the 7 TeV LHC. We find that the degree of fine-tuning in the pMSSM depends on the prior in which we scan our 19-dimensional space, but overall it is not as large as in mSUGRA. We find that a null result at the 7 TeV with $10 fb^{-1}$ and 20\% systematic errors would imply a need for a higher energy e+e- machine than the 500 GeV ILC to study Supersymmetry. Continuing on along the line of Supersymmetry, in chapter 5 we explore the possibility of adding one more generation to the MSSM (4GMSSM). We find that the CP-odd A boson can be very light due to the contribution of the heavy 4th generation fermion loops while all other Higgs particles (including the CP-even {\it h}) are all quite heavy. The parameter $tan(\beta)$ is strongly constrained to be between 0.5 and 2 due to perturbativity requirements on Yukawa couplings. We study the electroweak constraints as well as collider signatures on the possibility of a light A of mass $\sim$115 GeV. As for an LHC discovery, we find that this light A can be seen in the standard 2-photon Higgs search channel with cross-section more than an order of magnitude greater than that of the SM Higgs. In the last two chapters, we study possible search strategies to explore the new physics in a model-independent way. In chapter 6, we attempt to show how one could be largely agnostic about the underlying model in exploring the complete kinematically-allowed parameter space of pair-produced color octet particles (with mass $m_{\tilde{g}}$) that each directly decay into two jets plus a neutral stable particle (with mass $m_{\tilde{B}}$) that would escape the detectors and appear as MET. The kinematics of this process can be completely described by two parameters $m_{\tilde {g}}$ and $m_{\tilde {B}}$ , and in particular their splitting determines the softness or hardness of jets from the decay products. In order to cover the whole parameter space, one would need separate searches for different regions. We show that optimizing the final cuts for every ($m_{\tilde {g}}$, $m_{\tilde {B}}$) point, and combining all searches, can extend the coverage significantly. Since this is just based on the kinematics of the decay, this result can be easily interpreted for any model with this decay topology. In chapter 7, we carry this model-independent approach further in jets plus missing energy searches, by proposing that one should bin the measured data (or simulated SM background) differentially in MET and $H_T$ (scalar sum of invisible energy) for each search, and use them to set limits on any model of interest. We demonstrate this technique by carrying out a search similar to that studied in chapter 6, with one added decay step for the color octet particle, mainly it decays to 2 jets and another particle (with mass $m_{\tilde {W}}$) and it in turn decays to the neutral stable particle and 2 jets. We study different kinematic regions and set bounds in this 3-dimensional parameter space ($m_{\tilde {g}}$, $m_{\tilde {W}}$, $m_{\tilde {B}}$).


Physics at the Large Hadron Collider

Physics at the Large Hadron Collider

Author: Amitava Datta

Publisher: Springer Science & Business Media

Published: 2010-05-30

Total Pages: 260

ISBN-13: 8184892950

DOWNLOAD EBOOK

In an epoch when particle physics is awaiting a major step forward, the Large Hydron Collider (LHC) at CERN, Geneva will soon be operational. It will collide a beam of high energy protons with another similar beam circulation in the same 27 km tunnel but in the opposite direction, resulting in the production of many elementary particles some never created in the laboratory before. It is widely expected that the LHC will discover the Higgs boson, the particle which supposedly lends masses to all other fundamental particles. In addition, the question as to whether there is some new law of physics at such high energy is likely to be answered through this experiment. The present volume contains a collection of articles written by international experts, both theoreticians and experimentalists, from India and abroad, which aims to acquaint a non-specialist with some basic issues related to the LHC. At the same time, it is expected to be a useful, rudimentary companion of introductory exposition and technical expertise alike, and it is hoped to become unique in its kind. The fact that there is substantial Indian involvement in the entire LHC endeavour, at all levels including fabrication, physics analysis procedures as well as theoretical studies, is also amply brought out in the collection.


The Higgs Hunter's Guide

The Higgs Hunter's Guide

Author: John F. Gunion

Publisher: CRC Press

Published: 2018-03-05

Total Pages: 333

ISBN-13: 0429976070

DOWNLOAD EBOOK

The Higgs Hunter's Guide is a definitive and comprehensive guide to the physics of Higgs bosons. In particular, it discusses the extended Higgs sectors required by those recent theoretical approaches that go beyond the Standard Model, including supersymmetry and superstring-inspired models.


Phenomenology of the Higgs at the Hadron Colliders

Phenomenology of the Higgs at the Hadron Colliders

Author: Julien Baglio

Publisher:

Published: 2011

Total Pages: 0

ISBN-13:

DOWNLOAD EBOOK

This thesis has been conducted in the context of one of the utmost important searches at current hadron colliders, that is the search for the Higgs boson, the remnant of the electroweak symmetry breaking. We wish to study the phenomenology of the Higgs boson in both the Standard Model (SM) framework and its minimal Supersymmetric extension (MSSM). After a review of the Standard Model in a first part and of the key reasons and ingredients for the supersymmetry in general and the MSSM in particular in a third part, we will present the calculation of the inclusive production cross sections of the Higgs boson in the main channels at the two current hadron colliders that are the Fermilab Tevatron collider and the CERN Large Hadron Collider (LHC), starting by the SM case in the second part and presenting the MSSM results, where we have five Higgs bosons and focusing on the two main production channels that are the gluon gluon fusion and the bottom quarks fusion, in the fourth part. The main output of this calculation is the extensive study of the various theoretical uncertainties that affect the predictions: the scale uncertainties which probe our ignorance of the higher-order terms in a fixed order perturbative calculation, the parton distribution functions (PDF) uncertainties and its related uncertainties from the value of the strong coupling constant, and the uncertainties coming from the use of an effective field theory to simplify the hard calculation. We then move on to the study of the Higgs decay branching ratios which are also affected by diverse uncertainties. We will present the combination of the production cross sections and decay branching fractions in some specific cases which will show interesting consequences on the total theoretical uncertainties. We move on to present the results confronted to experiments and show that the theoretical uncertainties have a significant impact on the inferred limits either in the SM search for the Higgs boson or on the MSSM parameter space, including some assessments about SM backgrounds to the Higgs production and how they are affected by theoretical uncertainties. One significant result will also come out of the MSSM analysis and open a novel strategy search for the Standard Higgs boson at the LHC. We finally present in the last part some preliminary results of this study in the case of exclusive production which is of utmost interest for the experimentalists.