The Monte Carlo Methods in Atmospheric Optics

The Monte Carlo Methods in Atmospheric Optics

Author: G.I. Marchuk

Publisher: Springer

Published: 2013-04-17

Total Pages: 218

ISBN-13: 3540352376

DOWNLOAD EBOOK

This monograph is devoted to urgent questions of the theory and applications of the Monte Carlo method for solving problems of atmospheric optics and hydrooptics. The importance of these problems has grown because of the increas ing need to interpret optical observations, and to estimate radiative balance precisely for weather forecasting. Inhomogeneity and sphericity of the atmos phere, absorption in atmospheric layers, multiple scattering and polarization of light, all create difficulties in solving these problems by traditional methods of computational mathematics. Particular difficulty arises when one must solve nonstationary problems of the theory of transfer of narrow beams that are connected with the estimation of spatial location and time characteristics of the radiation field. The most universal method for solving those problems is the Monte Carlo method, which is a numerical simulation of the radiative-transfer process. This process can be regarded as a Markov chain of photon collisions in a medium, which result in scattering or absorption. The Monte Carlo tech nique consists in computational simulation of that chain and in constructing statistical estimates of the desired functionals. The authors of this book have contributed to the development of mathemati cal methods of simulation and to the interpretation of optical observations. A series of general method using Monte Carlo techniques has been developed. The present book includes theories and algorithms of simulation. Numerical results corroborate the possibilities and give an impressive prospect of the applications of Monte Carlo methods.


Light Scattering by Systems of Particles

Light Scattering by Systems of Particles

Author: Adrian Doicu

Publisher: Springer

Published: 2006-10-19

Total Pages: 333

ISBN-13: 3540336974

DOWNLOAD EBOOK

This book develops the theory of the null-field method (also called T-matrix method), covering almost all aspects and current applications. This book also incorporates FORTRAN programs and simulation results. Worked examples of the application of the FORTRAN programs show readers how to adapt or modify the programs for their specific application.


From the Satellite to the Earth's Surface: Studies Relevant to NASA’s Plankton, Aerosol, Cloud, Ocean Ecosystems (PACE) Mission

From the Satellite to the Earth's Surface: Studies Relevant to NASA’s Plankton, Aerosol, Cloud, Ocean Ecosystems (PACE) Mission

Author: David Antoine

Publisher: Frontiers Media SA

Published: 2020-03-04

Total Pages: 226

ISBN-13: 2889635007

DOWNLOAD EBOOK

Earth’s atmosphere and oceans play individual and interconnected roles in regulating climate and the hydrological system, supporting organisms and ecosystems, and contributing to the well-being of human communities and economies. Recognizing the importance of these two geophysical fluids, NASA designed the Plankton, Aerosol, Cloud and ocean Ecosystems (PACE) mission to bring cutting edge technology to space borne measurements of the atmosphere and ocean. PACE will carry the Ocean Color Instrument (OCI), a radiometer with hyperspectral capability from the ultraviolet through the near-infrared, plus eight discreet shortwave infrared bands. Thus, OCI will measure the broadest solar spectrum of any NASA instrument, to date. PACE’s second instrument will be a Multi-Angle Polarimeter (MAP). MAP will be NASA’s first imaging polarimeter on board a comprehensive Earth science mission. These instruments bring new capability to the science community, but also new challenges. Fundamentals, such as basic radiative transfer models, require review, enhancements and benchmarking in order to meet the needs of the atmosphereocean communities in the PACE era. Both OCI and MAP will bring opportunities to continue heritage climate data records of aerosols and clouds and to advance characterization of these atmospheric constituents with new macrophysical and microphysical parameters. The ability to better characterize atmospheric constituents is a necessity to better separate ocean and atmosphere signals in order to fully realize the potential of PACE measurements for oceanic observations. Atmospheric correction in the PACE era must address the expanded wavelength range and resolution of OCI images, requiring new approaches that go beyond heritage algorithms. This Research Topic encompasses fundamental radiative transfer studies, with application to the atmosphere, ocean or coupled atmosphere-ocean system. It includes remote sensing of aerosols, clouds and trace gases, over ocean or over land, but with particular focus on algorithms that take advantage of OCI’s new capabilities or multi-angle polarimetry. The Research Topic embraces studies of atmospheric correction over ocean including addressing issues of aerosols, cloud masking, foam, bubbles, ice etc., as well as ocean bio-optics and biogeochemical studies taking advantage of the PACE and polarization spectral capabilities.