DC-DC Converter Topologies

DC-DC Converter Topologies

Author: Gerry Moschopoulos

Publisher: John Wiley & Sons

Published: 2024-01-31

Total Pages: 468

ISBN-13: 111961242X

DOWNLOAD EBOOK

A comprehensive look at DC-DC converters and advanced power converter topologies for all skills levels As it can be rare for source voltage to meet the requirements of a Direct Current (DC) load, DC-DC converters are essential to access service. DC-DC power converters employ power semiconductor devices (like MOSFETs and IGBTs) as switches and passive elements such as capacitors, inductors, and transformers to alter the voltage provided by a DC source into the necessary DC voltage as is required by a DC load. This source can be a battery, solar panels, fuel cells, or a DC bus voltage fed by rectified AC utility voltage. As the many components of DC-DC converters can be differently arranged into circuit structures called topologies, there are as many possible circuit topologies as there are possible combinations of circuit elements. Focusing on DC-DC switch-mode power converters ranging from 50 W to 10kW, DC-DC Converter Topologies provides a survey of all converter topology types within this power range. General principles are described for each topology type using a representative converter as an example. Variations that can be found that differ from the example are then examined, with a helpful discussion of comparisons when relevant. A broad range of topics is covered within the book, from simple, low-power converters to complex, high-power converters and everywhere in between. DC-DC Converter Topologies readers will also find: A detailed discussion of four key DC-DC converter topologies Description of isolated two-switch pulse-width modulated (PWM) topologies including push-pull, half-bridge, and interleaved converters An exploration of high-gain converters such as coupled inductors, voltage multipliers, and switched capacitor converters This book provides the tools so that a non-expert will be equipped to deal with the vast array of DC-DC converters that presently exist. As such, DC-DC Converter Topologies is a useful reference for electrical engineers, professors, and graduate students studying in the field.


High Power Density DC/DC Converter

High Power Density DC/DC Converter

Author: National Aeronautics and Space Administration (NASA)

Publisher: Createspace Independent Publishing Platform

Published: 2018-07-08

Total Pages: 92

ISBN-13: 9781722432294

DOWNLOAD EBOOK

The work involved in the identification and selection of a suitable converter topology is described. Three new dc/dc converter topologies are proposed: Phase-Shifted Single Active Bridge DC/DC Converter; Single Phase Dual Active Bridges DC/DC Converter; and Three Phase Dual Active Bridges DC/DC Converter (Topology C). The salient features of these topologies are: (1) All are minimal in structure, i.e., each consists of an input and output bridge, input and output filter and a transformer, all components essential for a high power dc/dc conversion process; (2) All devices of both the bridges can operate under near zero-voltage conditions, making possible a reduction of device switching losses and hence, an increase in switching frequency; (3) All circuits operate at a constant frequency, thus simplifying the task of the magnetic and filter elements; (4) Since, the leakage inductance of the transformer is used as the main current transfer element, problems associated with the diode reverse recovery are eliminated. Also, this mode of operation allows easy paralleling of multiple modules for extending the power capacity of the system; (5) All circuits are least sensitive to parasitic impedances, infact the parasitics are efficently utilized; and (6) The soft switching transitions, result in low electromagnetic interference. A detailed analysis of each topology was carried out. Based on the analysis, the various device and component ratings for each topology operating at an optimum point, and under the given specifications, are tabulated and discussed. Divan, Deepakraj M. Unspecified Center...


Modeling, Design, Control and Validation of a Multiple-input DC-DC Converter Topology for Effective Renewable Energy Management

Modeling, Design, Control and Validation of a Multiple-input DC-DC Converter Topology for Effective Renewable Energy Management

Author: Hassan AboReada

Publisher:

Published: 2019

Total Pages: 0

ISBN-13:

DOWNLOAD EBOOK

Multiple-input power converters are receiving significant research attention as they offer several advantages over conventional converters, specifically their ability to interface multiple energy sources of various kinds. Additionally, they have promising features such as less components, higher power density and centralized control. A novel multiple-input single-output DC-DC converter topology is proposed for effective energy management. The topology is designed depending on the conventional structure of boost and buck converters and benefits greatly from this combination. Effective energy management strategy is used and a simple control system is introduced by utilizing voltage and current control. The converter is simulated and implemented in hardware testing as a 300W system to confirm the performance and validation of the topology and it is capable of supplying constant output power through different input sources with any voltage variation. The results show a high performance and all of the operating modes have been investigated.


Analysis and Design of Power Converter Topologies for Application in Future More Electric Aircraft

Analysis and Design of Power Converter Topologies for Application in Future More Electric Aircraft

Author: Amit Kumar Singh

Publisher: Springer

Published: 2018-04-20

Total Pages: 216

ISBN-13: 9811082138

DOWNLOAD EBOOK

This thesis proposes new power converter topologies suitable for aircraft systems. It also proposes both AC-DC and DC-DC types of converters for different electrical loads to improve the performance these systems. To increase fuel efficiency and reduce environmental impacts, less efficient non-electrical aircraft systems are being replaced by electrical systems. However, more electrical systems requires more electrical power to be generated in the aircraft. The increased consumption of electrical power in both civil and military aircrafts has necessitated the use of more efficient electrical power conversion technologies. This book presents acomprehensive mathematical analysis and the design and digital simulation of the power converters. Subsequently it discusses the construction of the hardware prototypes of each converter and the experimental tests carried out to verify the benefits of the proposed solutions in comparison to the existing solutions.


Advanced Multiphasing Switched-Capacitor DC-DC Converters

Advanced Multiphasing Switched-Capacitor DC-DC Converters

Author: Nicolas Butzen

Publisher: Springer Nature

Published: 2020-07-03

Total Pages: 160

ISBN-13: 3030387356

DOWNLOAD EBOOK

This book gives a detailed analysis of switched-capacitor DC-DC converters that are entirely integrated on a single chip and establishes that these converters are mainly limited by the large parasitic coupling, the low capacitor energy density, and the fact that switched-capacitor converter topologies only have a fixed voltage conversion ratio. The authors introduce the concept of Advanced Multiphasing as a way to circumvent these limitations by having multiple out-of-phase parallel converter cores interact with each other to minimize capacitor charging losses, leading to several techniques that demonstrate record efficiency and power-density, and even a fundamentally new type of switched-capacitor topology that has a continuously-scalable conversion ratio. Provides single-source reference to the recently-developed Advanced Multiphasing concept; Enables greatly improved performance and capabilities in fully integrated switched-capacitor converters; Enables readers to design DC-DC converters, where multiple converter cores are put in parallel and actively interact with each other over several phases to improve their capabilities.


Soft Commutation Isolated DC-DC Converters

Soft Commutation Isolated DC-DC Converters

Author: Ivo Barbi

Publisher: Springer

Published: 2018-08-27

Total Pages: 325

ISBN-13: 3319961780

DOWNLOAD EBOOK

This book describes the operation and analysis of soft-commutated isolated DC–DC converters used in the design of high efficiency and high power density equipment. It explains the basic principles behind first- and second-order circuits with power switches to enable readers to understand the importance of these converters in high efficiency and high power density power supply design for residential, commercial, industrial and medical use as well as in aerospace equipment. With each chapter featuring a different power converter topology, the book covers the most important resonant converters, including series resonant converters; resonant LLC converters; soft commutation pulse width modulation converters; zero voltage switching; and zero current switching. Each topic is presented with full analysis, a showcase of the power stages of the converters, exercises and their solutions as well as simulation results, which mainly focus on the commutation analysis and output characteristic. This book is a valuable source of information for professionals working in power electronics, power conversion and design of high efficiency and high power density DC–DC converters and switch mode power supplies. The book also serves as a point of reference for engineers responsible for development projects and equipment in companies and research centers and a text for advanced students.


Design and Control of Power Converters 2020

Design and Control of Power Converters 2020

Author: Manuel Arias

Publisher: MDPI

Published: 2021-06-04

Total Pages: 188

ISBN-13: 3036507027

DOWNLOAD EBOOK

In this book, nine papers focusing on different fields of power electronics are gathered, all of which are in line with the present trends in research and industry. Given the generality of the Special Issue, the covered topics range from electrothermal models and losses models in semiconductors and magnetics to converters used in high-power applications. In this last case, the papers address specific problems such as the distortion due to zero-current detection or fault investigation using the fast Fourier transform, all being focused on analyzing the topologies of high-power high-density applications, such as the dual active bridge or the H-bridge multilevel inverter. All the papers provide enough insight in the analyzed issues to be used as the starting point of any research. Experimental or simulation results are presented to validate and help with the understanding of the proposed ideas. To summarize, this book will help the reader to solve specific problems in industrial equipment or to increase their knowledge in specific fields.


Magnetic Materials and Soft-switched Topologies for High-current DC-DC Converters

Magnetic Materials and Soft-switched Topologies for High-current DC-DC Converters

Author: Marek S. Rylko

Publisher:

Published: 2011

Total Pages: 190

ISBN-13:

DOWNLOAD EBOOK

The thesis is focused on the magnetic materials comparison and selection for high-power non-isolated dc-dc converters for industrial applications or electric, hybrid and fuel cell vehicles. The application of high-frequency bi-directional soft-switched dc-dc converters is also investigated. The thesis initially outlines the motivation for an energy-efficient transportation system with minimum environmental impact and reduced dependence on exhaustible resources. This is followed by a general overview of the power system architectures for electric, hybrid and fuel cell vehicles. The vehicle power sources and general dc-dc converter topologies are discussed. The dc-dc converter components are discussed with emphasis on recent semiconductor advances. A novel bi-directional soft-switched dc-dc converter with an auxiliary cell is introduced in this thesis. The soft-switching cell allows for the MOSFET{u2019}s intrinsic body diode to operate in a half-bridge without reduced efficiency. The converter{u2019}s mode-by-mode operation is analysed and closed-form expressions are presented for the average current gain of the converter. The design issues are presented and circuit limitations are discussed. Magnetic materials for the main dc-dc converter inductor are compared and contrasted. Novel magnetic material comparisons are introduced, which include the material dc bias capability and thermal conductivity. An inductor design algorithm is developed and used to compare the various magnetic materials for the application. The area-product analysis is presented for the minimum inductor size and highlights the optimum magnetic materials. Finally, the high-flux magnetic materials are experimentally compared. The practical effects of frequency, dc-bias, and converters duty-cycle effect for arbitrary shapes of flux density, air gap effects on core and winding, the winding shielding effect, and thermal configuration are investigated. The thesis results have been documented at IEEE EPE conference in 2007 and 2008, IEEE APEC in 2009 and 2010, and IEEE VPPC in 2010. A 2011 journal has been approved by IEEE Transactions on Power Electronics.


New Topologies and Modulation Schemes for Soft-Switching Isolated DC–DC Converters

New Topologies and Modulation Schemes for Soft-Switching Isolated DC–DC Converters

Author: Zhiqiang Guo

Publisher: Springer Nature

Published: 2019-09-20

Total Pages: 243

ISBN-13: 9813299347

DOWNLOAD EBOOK

This book presents a series of new topologies and modulation schemes for soft-switching in isolated DC–DC converters. Providing detailed analyses and design procedures for converters used in a broad range of applications, it offers a wealth of engineering insights for researchers and students in the field of power electronics, as well as stimulating new ideas for future research.