NeutroAlgebra is a Generalization of Partial Algebra

NeutroAlgebra is a Generalization of Partial Algebra

Author: Florentin Smarandache

Publisher: Infinite Study

Published:

Total Pages: 10

ISBN-13:

DOWNLOAD EBOOK

In this paper we recall, improve, and extend several definitions, properties and applications of our previous 2019 research referred to NeutroAlgebras and AntiAlgebras (also called NeutroAlgebraic Structures and respectively AntiAlgebraic Structures).


International Journal of Neutrosophic Science (IJNS) Volume 2, 2020

International Journal of Neutrosophic Science (IJNS) Volume 2, 2020

Author: Broumi Said

Publisher: Infinite Study

Published:

Total Pages: 94

ISBN-13:

DOWNLOAD EBOOK

International Journal of Neutrosophic Science (IJNS) is a peer-review journal publishing high quality experimental and theoretical research in all areas of Neutrosophic and its Applications. IJNS is published quarterly. IJNS is devoted to the publication of peer-reviewed original research papers lying in the domain of neutrosophic sets and systems. Papers submitted for possible publication may concern with foundations, neutrosophic logic and mathematical structures in the neutrosophic setting. Besides providing emphasis on topics like artificial intelligence, pattern recognition, image processing, robotics, decision making, data analysis, data mining, applications of neutrosophic mathematical theories contributing to economics, finance, management, industries, electronics, and communications are promoted.


Algebras and Orders

Algebras and Orders

Author: Ivo G. Rosenberg

Publisher: Springer Science & Business Media

Published: 2013-03-09

Total Pages: 565

ISBN-13: 9401706972

DOWNLOAD EBOOK

In the summer of 1991 the Department of Mathematics and Statistics of the Universite de Montreal was fortunate to host the NATO Advanced Study Institute "Algebras and Orders" as its 30th Seminaire de mathematiques superieures (SMS), a summer school with a long tradition and well-established reputation. This book contains the contributions of the invited speakers. Universal algebra- which established itself only in the 1930's- grew from traditional algebra (e.g., groups, modules, rings and lattices) and logic (e.g., propositional calculus, model theory and the theory of relations). It started by extending results from these fields but by now it is a well-established and dynamic discipline in its own right. One of the objectives of the ASI was to cover a broad spectrum of topics in this field, and to put in evidence the natural links to, and interactions with, boolean algebra, lattice theory, topology, graphs, relations, automata, theoretical computer science and (partial) orders. The theory of orders is a relatively young and vigorous discipline sharing certain topics as well as many researchers and meetings with universal algebra and lattice theory. W. Taylor surveyed the abstract clone theory which formalizes the process of compos ing operations (i.e., the formation of term operations) of an algebra as a special category with countably many objects, and leading naturally to the interpretation and equivalence of varieties.


The Theory of Partial Algebraic Operations

The Theory of Partial Algebraic Operations

Author: E.S. Ljapin

Publisher: Springer Science & Business Media

Published: 2013-04-17

Total Pages: 244

ISBN-13: 9401734836

DOWNLOAD EBOOK

Nowadays algebra is understood basically as the general theory of algebraic oper ations and relations. It is characterised by a considerable intrinsic naturalness of its initial notions and problems, the unity of its methods, and a breadth that far exceeds that of its basic concepts. It is more often that its power begins to be displayed when one moves outside its own limits. This characteristic ability is seen when one investigates not only complete operations, but partial operations. To a considerable extent these are related to algebraic operators and algebraic operations. The tendency to ever greater generality is amongst the reasons that playa role in explaining this development. But other important reasons play an even greater role. Within this same theory of total operations (that is, operations defined everywhere), there persistently arises in its different sections a necessity of examining the emergent feature of various partial operations. It is particularly important that this has been found in those parts of algebra it brings together and other areas of mathematics it interacts with as well as where algebra finds applica tion at the very limits of mathematics. In this connection we mention the theory of the composition of mappings, category theory, the theory of formal languages and the related theory of mathematical linguistics, coding theory, information theory, and algebraic automata theory. In all these areas (as well as in others) from time to time there arises the need to consider one or another partial operation.