Stochastic Optimization Methods

Stochastic Optimization Methods

Author: Kurt Marti

Publisher: Springer

Published: 2015-02-21

Total Pages: 389

ISBN-13: 3662462141

DOWNLOAD EBOOK

This book examines optimization problems that in practice involve random model parameters. It details the computation of robust optimal solutions, i.e., optimal solutions that are insensitive with respect to random parameter variations, where appropriate deterministic substitute problems are needed. Based on the probability distribution of the random data and using decision theoretical concepts, optimization problems under stochastic uncertainty are converted into appropriate deterministic substitute problems. Due to the probabilities and expectations involved, the book also shows how to apply approximative solution techniques. Several deterministic and stochastic approximation methods are provided: Taylor expansion methods, regression and response surface methods (RSM), probability inequalities, multiple linearization of survival/failure domains, discretization methods, convex approximation/deterministic descent directions/efficient points, stochastic approximation and gradient procedures and differentiation formulas for probabilities and expectations. In the third edition, this book further develops stochastic optimization methods. In particular, it now shows how to apply stochastic optimization methods to the approximate solution of important concrete problems arising in engineering, economics and operations research.


Introduction to Stochastic Programming

Introduction to Stochastic Programming

Author: John R. Birge

Publisher: Springer Science & Business Media

Published: 2006-04-06

Total Pages: 427

ISBN-13: 0387226184

DOWNLOAD EBOOK

This rapidly developing field encompasses many disciplines including operations research, mathematics, and probability. Conversely, it is being applied in a wide variety of subjects ranging from agriculture to financial planning and from industrial engineering to computer networks. This textbook provides a first course in stochastic programming suitable for students with a basic knowledge of linear programming, elementary analysis, and probability. The authors present a broad overview of the main themes and methods of the subject, thus helping students develop an intuition for how to model uncertainty into mathematical problems, what uncertainty changes bring to the decision process, and what techniques help to manage uncertainty in solving the problems. The early chapters introduce some worked examples of stochastic programming, demonstrate how a stochastic model is formally built, develop the properties of stochastic programs and the basic solution techniques used to solve them. The book then goes on to cover approximation and sampling techniques and is rounded off by an in-depth case study. A well-paced and wide-ranging introduction to this subject.


Modeling with Stochastic Programming

Modeling with Stochastic Programming

Author: Alan J. King

Publisher: Springer Science & Business Media

Published: 2012-06-19

Total Pages: 189

ISBN-13: 0387878173

DOWNLOAD EBOOK

While there are several texts on how to solve and analyze stochastic programs, this is the first text to address basic questions about how to model uncertainty, and how to reformulate a deterministic model so that it can be analyzed in a stochastic setting. This text would be suitable as a stand-alone or supplement for a second course in OR/MS or in optimization-oriented engineering disciplines where the instructor wants to explain where models come from and what the fundamental issues are. The book is easy-to-read, highly illustrated with lots of examples and discussions. It will be suitable for graduate students and researchers working in operations research, mathematics, engineering and related departments where there is interest in learning how to model uncertainty. Alan King is a Research Staff Member at IBM's Thomas J. Watson Research Center in New York. Stein W. Wallace is a Professor of Operational Research at Lancaster University Management School in England.


Stochastic Models in Operations Research: Stochastic optimization

Stochastic Models in Operations Research: Stochastic optimization

Author: Daniel P. Heyman

Publisher: Courier Corporation

Published: 2004-01-01

Total Pages: 580

ISBN-13: 9780486432601

DOWNLOAD EBOOK

This two-volume set of texts explores the central facts and ideas of stochastic processes, illustrating their use in models based on applied and theoretical investigations. They demonstrate the interdependence of three areas of study that usually receive separate treatments: stochastic processes, operating characteristics of stochastic systems, and stochastic optimization. Comprehensive in its scope, they emphasize the practical importance, intellectual stimulation, and mathematical elegance of stochastic models and are intended primarily as graduate-level texts.


Stochastic Processes and Models in Operations Research

Stochastic Processes and Models in Operations Research

Author: Anbazhagan, Neelamegam

Publisher: IGI Global

Published: 2016-03-24

Total Pages: 359

ISBN-13: 1522500456

DOWNLOAD EBOOK

Decision-making is an important task no matter the industry. Operations research, as a discipline, helps alleviate decision-making problems through the extraction of reliable information related to the task at hand in order to come to a viable solution. Integrating stochastic processes into operations research and management can further aid in the decision-making process for industrial and management problems. Stochastic Processes and Models in Operations Research emphasizes mathematical tools and equations relevant for solving complex problems within business and industrial settings. This research-based publication aims to assist scholars, researchers, operations managers, and graduate-level students by providing comprehensive exposure to the concepts, trends, and technologies relevant to stochastic process modeling to solve operations research problems.


Stochastic Programming

Stochastic Programming

Author: Willem K. Klein Haneveld

Publisher: Springer Nature

Published: 2019-10-24

Total Pages: 255

ISBN-13: 3030292193

DOWNLOAD EBOOK

This book provides an essential introduction to Stochastic Programming, especially intended for graduate students. The book begins by exploring a linear programming problem with random parameters, representing a decision problem under uncertainty. Several models for this problem are presented, including the main ones used in Stochastic Programming: recourse models and chance constraint models. The book not only discusses the theoretical properties of these models and algorithms for solving them, but also explains the intrinsic differences between the models. In the book’s closing section, several case studies are presented, helping students apply the theory covered to practical problems. The book is based on lecture notes developed for an Econometrics and Operations Research course for master students at the University of Groningen, the Netherlands - the longest-standing Stochastic Programming course worldwide.


Multistage Stochastic Optimization

Multistage Stochastic Optimization

Author: Georg Ch. Pflug

Publisher: Springer

Published: 2014-11-12

Total Pages: 309

ISBN-13: 3319088432

DOWNLOAD EBOOK

Multistage stochastic optimization problems appear in many ways in finance, insurance, energy production and trading, logistics and transportation, among other areas. They describe decision situations under uncertainty and with a longer planning horizon. This book contains a comprehensive treatment of today’s state of the art in multistage stochastic optimization. It covers the mathematical backgrounds of approximation theory as well as numerous practical algorithms and examples for the generation and handling of scenario trees. A special emphasis is put on estimation and bounding of the modeling error using novel distance concepts, on time consistency and the role of model ambiguity in the decision process. An extensive treatment of examples from electricity production, asset liability management and inventory control concludes the book.


Stochastic Simulation Optimization

Stochastic Simulation Optimization

Author: Chun-hung Chen

Publisher: World Scientific

Published: 2011

Total Pages: 246

ISBN-13: 9814282642

DOWNLOAD EBOOK

With the advance of new computing technology, simulation is becoming very popular for designing large, complex and stochastic engineering systems, since closed-form analytical solutions generally do not exist for such problems. However, the added flexibility of simulation often creates models that are computationally intractable. Moreover, to obtain a sound statistical estimate at a specified level of confidence, a large number of simulation runs (or replications) is usually required for each design alternative. If the number of design alternatives is large, the total simulation cost can be very expensive. Stochastic Simulation Optimization addresses the pertinent efficiency issue via smart allocation of computing resource in the simulation experiments for optimization, and aims to provide academic researchers and industrial practitioners with a comprehensive coverage of OCBA approach for stochastic simulation optimization. Starting with an intuitive explanation of computing budget allocation and a discussion of its impact on optimization performance, a series of OCBA approaches developed for various problems are then presented, from the selection of the best design to optimization with multiple objectives. Finally, this book discusses the potential extension of OCBA notion to different applications such as data envelopment analysis, experiments of design and rare-event simulation.


Stochastic Optimization

Stochastic Optimization

Author: Stanislav Uryasev

Publisher: Springer Science & Business Media

Published: 2013-03-09

Total Pages: 438

ISBN-13: 1475765940

DOWNLOAD EBOOK

Stochastic programming is the study of procedures for decision making under the presence of uncertainties and risks. Stochastic programming approaches have been successfully used in a number of areas such as energy and production planning, telecommunications, and transportation. Recently, the practical experience gained in stochastic programming has been expanded to a much larger spectrum of applications including financial modeling, risk management, and probabilistic risk analysis. Major topics in this volume include: (1) advances in theory and implementation of stochastic programming algorithms; (2) sensitivity analysis of stochastic systems; (3) stochastic programming applications and other related topics. Audience: Researchers and academies working in optimization, computer modeling, operations research and financial engineering. The book is appropriate as supplementary reading in courses on optimization and financial engineering.


Constructive Computation in Stochastic Models with Applications

Constructive Computation in Stochastic Models with Applications

Author: Quan-Lin Li

Publisher: Springer Science & Business Media

Published: 2011-02-02

Total Pages: 693

ISBN-13: 364211492X

DOWNLOAD EBOOK

"Constructive Computation in Stochastic Models with Applications: The RG-Factorizations" provides a unified, constructive and algorithmic framework for numerical computation of many practical stochastic systems. It summarizes recent important advances in computational study of stochastic models from several crucial directions, such as stationary computation, transient solution, asymptotic analysis, reward processes, decision processes, sensitivity analysis as well as game theory. Graduate students, researchers and practicing engineers in the field of operations research, management sciences, applied probability, computer networks, manufacturing systems, transportation systems, insurance and finance, risk management and biological sciences will find this book valuable. Dr. Quan-Lin Li is an Associate Professor at the Department of Industrial Engineering of Tsinghua University, China.