Stochastic Analysis and Related Topics VI

Stochastic Analysis and Related Topics VI

Author: Laurent Decreusefond

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 414

ISBN-13: 146122022X

DOWNLOAD EBOOK

This volume contains the contributions of the participants of the Sixth Oslo-Silivri Workshop on Stochastic Analysis, held in Geilo from July 29 to August 6, 1996. There are two main lectures " Stochastic Differential Equations with Memory, by S.E.A. Mohammed, " Backward SDE's and Viscosity Solutions of Second Order Semilinear PDE's, by E. Pardoux. The main lectures are presented at the beginning of the volume. There is also a review paper at the third place about the stochastic calculus of variations on Lie groups. The contributing papers vary from SPDEs to Non-Kolmogorov type probabilistic models. We would like to thank " VISTA, a research cooperation between Norwegian Academy of Sciences and Letters and Den Norske Stats Oljeselskap (Statoil), " CNRS, Centre National de la Recherche Scientifique, " The Department of Mathematics of the University of Oslo, " The Ecole Nationale Superieure des Telecommunications, for their financial support. L. Decreusefond J. Gjerde B. 0ksendal A.S. Ustunel PARTICIPANTS TO THE 6TH WORKSHOP ON STOCHASTIC ANALYSIS Vestlia HØyfjellshotell, Geilo, Norway, July 28 -August 4, 1996. E-mail: [email protected] Aureli ALABERT Departament de Matematiques Laurent DECREUSEFOND Universitat Autonoma de Barcelona Ecole Nationale Superieure des Telecom 08193-Bellaterra munications CATALONIA (Spain) Departement Reseaux E-mail: [email protected] 46, rue Barrault Halvard ARNTZEN 75634 Paris Cedex 13 Dept. of Mathematics FRANCE University of Oslo E-mail: [email protected] Box 1053 Blindern Laurent DENIS N-0316 Oslo C.M.I


New Trends in Stochastic Analysis and Related Topics

New Trends in Stochastic Analysis and Related Topics

Author: Huaizhong Zhao

Publisher: World Scientific

Published: 2012

Total Pages: 458

ISBN-13: 9814360910

DOWNLOAD EBOOK

The volume is dedicated to Professor David Elworthy to celebrate his fundamental contribution and exceptional influence on stochastic analysis and related fields. Stochastic analysis has been profoundly developed as a vital fundamental research area in mathematics in recent decades. It has been discovered to have intrinsic connections with many other areas of mathematics such as partial differential equations, functional analysis, topology, differential geometry, dynamical systems, etc. Mathematicians developed many mathematical tools in stochastic analysis to understand and model random phenomena in physics, biology, finance, fluid, environment science, etc. This volume contains 12 comprehensive review/new articles written by world leading researchers (by invitation) and their collaborators. It covers stochastic analysis on manifolds, rough paths, Dirichlet forms, stochastic partial differential equations, stochastic dynamical systems, infinite dimensional analysis, stochastic flows, quantum stochastic analysis and stochastic Hamilton Jacobi theory. Articles contain cutting edge research methodology, results and ideas in relevant fields. They are of interest to research mathematicians and postgraduate students in stochastic analysis, probability, partial differential equations, dynamical systems, mathematical physics, as well as to physicists, financial mathematicians, engineers, etc.


Stochastic Analysis and Related Topics

Stochastic Analysis and Related Topics

Author: Laurent Decreusefond

Publisher: Springer Science & Business Media

Published: 2012-08-04

Total Pages: 222

ISBN-13: 3642299822

DOWNLOAD EBOOK

Since the early eighties, Ali Süleyman Üstünel has been one of the main contributors to the field of Malliavin calculus. In a workshop held in Paris, June 2010 several prominent researchers gave exciting talks in honor of his 60th birthday. The present volume includes scientific contributions from this workshop. Probability theory is first and foremost aimed at solving real-life problems containing randomness. Markov processes are one of the key tools for modeling that plays a vital part concerning such problems. Contributions on inventory control, mutation-selection in genetics and public-private partnerships illustrate several applications in this volume. Stochastic differential equations, be they partial or ordinary, also play a key role in stochastic modeling. Two of the contributions analyze examples that share a focus on probabilistic tools, namely stochastic analysis and stochastic calculus. Three other papers are devoted more to the theoretical development of these aspects. The volume addresses graduate students and researchers interested in stochastic analysis and its applications.


Stochastic Analysis and Related Topics

Stochastic Analysis and Related Topics

Author: Hayri Korezlioglu

Publisher: Springer

Published: 2006-11-14

Total Pages: 384

ISBN-13: 354039186X

DOWNLOAD EBOOK

The Silvri Workshop was divided into a short summer school and a working conference, producing lectures and research papers on recent developments in stochastic analysis on Wiener space. The topics treated in the lectures relate to the Malliavin calculus, the Skorohod integral and nonlinear functionals of white noise. Most of the research papers are applications of these subjects. This volume addresses researchers and graduate students in stochastic processes and theoretical physics.


Stochastic Analysis

Stochastic Analysis

Author: Paul Malliavin

Publisher: Springer

Published: 2015-06-12

Total Pages: 346

ISBN-13: 3642150748

DOWNLOAD EBOOK

In 5 independent sections, this book accounts recent main developments of stochastic analysis: Gross-Stroock Sobolev space over a Gaussian probability space; quasi-sure analysis; anticipate stochastic integrals as divergence operators; principle of transfer from ordinary differential equations to stochastic differential equations; Malliavin calculus and elliptic estimates; stochastic Analysis in infinite dimension.


Stochastic Analysis and Related Topics VIII

Stochastic Analysis and Related Topics VIII

Author: Ulug Capar

Publisher: Springer Science & Business Media

Published: 2003-04

Total Pages: 224

ISBN-13: 9783764369989

DOWNLOAD EBOOK

Over the last years, stochastic analysis has had an enormous progress with the impetus originating from different branches of mathematics: PDE's and the Malliavin calculus, quantum physics, path space analysis on curved manifolds via probabilistic methods, and more. This volume contains selected contributions which were presented at the 8th Silivri Workshop on Stochastic Analysis and Related Topics, held in September 2000 in Gazimagusa, North Cyprus. The topics include stochastic control theory, generalized functions in a nonlinear setting, tangent spaces of manifold-valued paths with quasi-invariant measures, and applications in game theory, theoretical biology and theoretical physics. Contributors: A.E. Bashirov, A. Bensoussan and J. Frehse, U. Capar and H. Aktuglul, A.B. Cruzeiro and Kai-Nan Xiang, E. Hausenblas, Y. Ishikawa, N. Mahmudov, P. Malliavin and U. Taneri, N. Privault, A.S. Üstünel


Stochastic Analysis and Related Topics II

Stochastic Analysis and Related Topics II

Author: Hayri Korezlioglu

Publisher: Springer

Published: 2006-11-14

Total Pages: 281

ISBN-13: 3540465960

DOWNLOAD EBOOK

The Second Silivri Workshop functioned as a short summer school and a working conference, producing lecture notes and research papers on recent developments of Stochastic Analysis on Wiener space. The topics of the lectures concern short time asymptotic problems and anticipative stochastic differential equations. Research papers are mostly extensions and applications of the techniques of anticipative stochastic calculus.


Stochastic Analysis in Discrete and Continuous Settings

Stochastic Analysis in Discrete and Continuous Settings

Author: Nicolas Privault

Publisher: Springer

Published: 2009-07-14

Total Pages: 322

ISBN-13: 3642023800

DOWNLOAD EBOOK

This monograph is an introduction to some aspects of stochastic analysis in the framework of normal martingales, in both discrete and continuous time. The text is mostly self-contained, except for Section 5.7 that requires some background in geometry, and should be accessible to graduate students and researchers having already received a basic training in probability. Prereq- sites are mostly limited to a knowledge of measure theory and probability, namely?-algebras,expectations,andconditionalexpectations.Ashortint- duction to stochastic calculus for continuous and jump processes is given in Chapter 2 using normal martingales, whose predictable quadratic variation is the Lebesgue measure. There already exists several books devoted to stochastic analysis for c- tinuous di?usion processes on Gaussian and Wiener spaces, cf. e.g. [51], [63], [65], [72], [83], [84], [92], [128], [134], [143], [146], [147]. The particular f- ture of this text is to simultaneously consider continuous processes and jump processes in the uni?ed framework of normal martingales.


Recent Developments in Stochastic Analysis and Related Topics

Recent Developments in Stochastic Analysis and Related Topics

Author: Sergio Albeverio

Publisher: World Scientific

Published: 2004

Total Pages: 471

ISBN-13: 9812561048

DOWNLOAD EBOOK

This volume contains 27 refereed research articles and survey papers written by experts in the field of stochastic analysis and related topics. Most contributors are well known leading mathematicians worldwide and prominent young scientists. The volume reflects a review of the recent developments in stochastic analysis and related topics. It puts in evidence the strong interconnection of stochastic analysis with other areas of mathematics, as well as with applications of mathematics in natural and social economic sciences. The volume also provides some possible future directions for the field.The proceedings have been selected for coverage in: ? Index to Scientific & Technical Proceedings? (ISTP? / ISI Proceedings)? Index to Scientific & Technical Proceedings (ISTP CDROM version / ISI Proceedings)? CC Proceedings ? Engineering & Physical Sciences


Brownian Motion and Stochastic Calculus

Brownian Motion and Stochastic Calculus

Author: Ioannis Karatzas

Publisher: Springer

Published: 2014-03-27

Total Pages: 490

ISBN-13: 1461209498

DOWNLOAD EBOOK

A graduate-course text, written for readers familiar with measure-theoretic probability and discrete-time processes, wishing to explore stochastic processes in continuous time. The vehicle chosen for this exposition is Brownian motion, which is presented as the canonical example of both a martingale and a Markov process with continuous paths. In this context, the theory of stochastic integration and stochastic calculus is developed, illustrated by results concerning representations of martingales and change of measure on Wiener space, which in turn permit a presentation of recent advances in financial economics. The book contains a detailed discussion of weak and strong solutions of stochastic differential equations and a study of local time for semimartingales, with special emphasis on the theory of Brownian local time. The whole is backed by a large number of problems and exercises.