Stem Cells and Progenitor Cells in Ischemic Stroke - Fashion or Future?

Stem Cells and Progenitor Cells in Ischemic Stroke - Fashion or Future?

Author: Thorsten R. Doeppner

Publisher: Frontiers Media SA

Published: 2016-01-15

Total Pages: 158

ISBN-13: 2889197247

DOWNLOAD EBOOK

Stroke remains one of the most devastating diseases in industrialized countries. Recanalization of the occluded arterial vessel using thrombolysis is the only causal therapy available. However, thrombolysis is limited due to severe side effects and a limited time window. As such, only a minority of patients receives this kind of therapy, showing a need for new and innovative treatment strategies. Although neuroprotective drugs have been shown to be beneficial in a variety of experimental stroke models, they ultimately failed in clinical trials. Consequently, recent scientific focus has been put on modulation of post-ischemic neuroregeneration, either via stimulation of endogenous neurogenesis or via application of exogenous stem cells or progenitor cells. Neurogenesis persists within the adult brain of both rodents and primates. As such, neural progenitor cells (NPCs) are found within distinct niches like the subventricular zone (SVZ) of the lateral ventricles and the subgranular zone of the dentate gyrus. Cerebral ischemia stimulates these astrocyte-like progenitor cells, upon which NPCs proliferate and migrate towards the site of lesion. There, NPCs partly differentiate into mature neurons, without significantly being integrated into the residing neural network. Rather, the majority of new-born cells dies within the first weeks post-stroke, leaving post-ischemic neurogenesis a phenomenon of unknown biological significance. Since NPCs do not replace lost brain tissue, beneficial effects observed in some studies after either stimulated or protected neurogenesis are generally contributed to indirect effects of these new-born cells. The precise identification of appropriated cellular mediators, however, is still elusive. How do these mediators work? Are they soluble factors or maybe even vesicular structures emanating from NPCs? What are the cues that guide NPCs towards the ischemic lesion site? How can post-ischemic neurogenesis be stimulated? How can the poor survival of NPCs be increased? In order to support post-ischemic neurogenesis, a variety of research groups have focused on application of exogenous stem/progenitor cells from various tissue sources. Among these, cultivated NPCs from the SVZ and mesenchymal stem cells (MSCs) from the bone marrow are frequently administered after induction of stroke. Although neuroprotection after delivery of stem/progenitor cells has been shown in various experimental stroke models, transplanted cells are usually not integrated in the neural network. Again, the vast amount of grafted cells dies or does not reach its target despite profound neuroprotection, also suggesting indirect paracrine effects as the cause of neuroprotection. Yet, the factors being responsible for these observations are under debate and still have to be addressed. Is there any “optimal” cell type for transplantation? How can the resistance of grafted cells against a non-favorable extracellular milieu be increased? What are the molecules that are vital for interaction between grafted cells and endogenous NPCs? The present research topic seeks to answer - at least in part - some of the aforementioned questions. Although the research topic predominantly focuses on experimental studies (and reviews alike), a current outlook towards clinical relevance is given as well.


Stem Cells and Progenitor Cells in Ischemic Stroke - Fashion Or Future?.

Stem Cells and Progenitor Cells in Ischemic Stroke - Fashion Or Future?.

Author:

Publisher:

Published: 2016

Total Pages: 0

ISBN-13:

DOWNLOAD EBOOK

Stroke remains one of the most devastating diseases in industrialized countries. Recanalization of the occluded arterial vessel using thrombolysis is the only causal therapy available. However, thrombolysis is limited due to severe side effects and a limited time window. As such, only a minority of patients receives this kind of therapy, showing a need for new and innovative treatment strategies. Although neuroprotective drugs have been shown to be beneficial in a variety of experimental stroke models, they ultimately failed in clinical trials. Consequently, recent scientific focus has been put on modulation of post-ischemic neuroregeneration, either via stimulation of endogenous neurogenesis or via application of exogenous stem cells or progenitor cells. Neurogenesis persists within the adult brain of both rodents and primates. As such, neural progenitor cells (NPCs) are found within distinct niches like the subventricular zone (SVZ) of the lateral ventricles and the subgranular zone of the dentate gyrus. Cerebral ischemia stimulates these astrocyte-like progenitor cells, upon which NPCs proliferate and migrate towards the site of lesion. There, NPCs partly differentiate into mature neurons, without significantly being integrated into the residing neural network. Rather, the majority of new-born cells dies within the first weeks post-stroke, leaving post-ischemic neurogenesis a phenomenon of unknown biological significance. Since NPCs do not replace lost brain tissue, beneficial effects observed in some studies after either stimulated or protected neurogenesis are generally contributed to indirect effects of these new-born cells. The precise identification of appropriated cellular mediators, however, is still elusive. How do these mediators work? Are they soluble factors or maybe even vesicular structures emanating from NPCs? What are the cues that guide NPCs towards the ischemic lesion site? How can post-ischemic neurogenesis be stimulated? How can the poor survival of NPCs be increased? In order to support post-ischemic neurogenesis, a variety of research groups have focused on application of exogenous stem/progenitor cells from various tissue sources. Among these, cultivated NPCs from the SVZ and mesenchymal stem cells (MSCs) from the bone marrow are frequently administered after induction of stroke. Although neuroprotection after delivery of stem/progenitor cells has been shown in various experimental stroke models, transplanted cells are usually not integrated in the neural network. Again, the vast amount of grafted cells dies or does not reach its target despite profound neuroprotection, also suggesting indirect paracrine effects as the cause of neuroprotection. Yet, the factors being responsible for these observations are under debate and still have to be addressed. Is there any "optimal" cell type for transplantation? How can the resistance of grafted cells against a non-favorable extracellular milieu be increased? What are the molecules that are vital for interaction between grafted cells and endogenous NPCs? The present research topic seeks to answer - at least in part - some of the aforementioned questions. Although the research topic predominantly focuses on experimental studies (and reviews alike), a current outlook towards clinical relevance is given as well.


Stem Cells

Stem Cells

Author: Mariusz Z. Ratajczak

Publisher: Springer Nature

Published: 2020-01-02

Total Pages: 410

ISBN-13: 3030312062

DOWNLOAD EBOOK

Since different types of stem cells for therapeutic applications have recently been proposed, this timely volume explores various sources of stem cells for tissue and organ regeneration and discusses their advantages and limitations. Also discussed are pros and cons for using embryonic stem cells, induced pluripotent stem cells, and adult stem cells isolated from postnatal tissues. Different types of adult stem cells for therapeutic applications are also reviewed, including hematopoietic stem cells, epidermal stem cells, endothelial progenitors, neural stem cells, mesenchymal stem cells, and very small embryonic-like stem cells. This book also addresses paracrine effects of stem cells in regenerative medicine that are mediated by extracellular microvesicles and soluble secretome. Finally, potential applications of stem cells in cardiology, gastroenterology, neurology, immunotherapy, and aging are presented. This is an ideal book for students and researchers working in the stem cell research field.


Regenerative Rehabilitation

Regenerative Rehabilitation

Author: Sarah M. Greising

Publisher: Springer Nature

Published: 2022-06-01

Total Pages: 462

ISBN-13: 3030958841

DOWNLOAD EBOOK

This contributed volume presents the current state of research on regenerative rehabilitation across a broad range of neuro- and musculoskeletal tissues. At its core, the primary goal of regenerative rehabilitation is to restore function after damage to bones, skeletal muscles, cartilage, ligaments/tendons, or tissues of the central and peripheral nervous systems. The authors describe the physiology of these neuro- and musculoskeletal tissue types and their inherent plasticity. The latter quality is what enables these tissues to adapt to mechanical and/or chemical cues to improve functional capacity. As a result, readers will learn how regenerative rehabilitation exploits that quality, to trigger positive changes in tissue function. Combining basic, translational, and clinical aspects of the topic, the book offers a valuable resource for both scientists and clinicians in the regenerative rehabilitation field.


Mesenchymal Stem Cell Derived Exosomes

Mesenchymal Stem Cell Derived Exosomes

Author: Yaoliang Tang

Publisher: Academic Press

Published: 2015-09-02

Total Pages: 287

ISBN-13: 0128004975

DOWNLOAD EBOOK

Mesenchymal stem cell-derived exosomes are at the forefront of research in two of the most high profile and funded scientific areas – cardiovascular research and stem cells. Mesenchymal Stem Cell Derived Exosomes provides insight into the biofunction and molecular mechanisms, practical tools for research, and a look toward the clinical applications of this exciting phenomenon which is emerging as an effective diagnostic. Primarily focused on the cardiovascular applications where there have been the greatest advancements toward the clinic, this is the first compendium for clinical and biomedical researchers who are interested in integrating MSC-derived exosomes as a diagnostic and therapeutic tool. - Introduces the MSC-exosome mediated cell-cell communication - Covers the major functional benefits in current MSC-derived exosome studies - Discusses strategies for the use of MSC-derived exosomes in cardiovascular therapies


Brain Repair After Stroke

Brain Repair After Stroke

Author: Steven C. Cramer

Publisher: Cambridge University Press

Published: 2010-10-28

Total Pages: 307

ISBN-13: 1139490656

DOWNLOAD EBOOK

Increasing evidence identifies the possibility of restoring function to the damaged brain via exogenous therapies. One major target for these advances is stroke, where most patients can be left with significant disability. Treatments have the potential to improve the victim's quality of life significantly and reduce the time and expense of rehabilitation. Brain Repair After Stroke reviews the biology of spontaneous brain repair after stroke in animal models and in humans. Detailed chapters cover the many forms of therapy being explored to promote brain repair and consider clinical trial issues in this context. This book provides a summary of the neurobiology of innate and treatment-induced repair mechanisms after hypoxia and reviews the state of the art for human therapeutics in relation to promoting behavioral recovery after stroke. Essential reading for stroke physicians, neurologists, rehabilitation physicians and neuropsychologists.


Mesenchymal Stem Cell Therapy

Mesenchymal Stem Cell Therapy

Author: Lucas G. Chase

Publisher: Springer Science & Business Media

Published: 2012-12-12

Total Pages: 458

ISBN-13: 1627032002

DOWNLOAD EBOOK

Over the past decade, significant efforts have been made to develop stem cell-based therapies for difficult to treat diseases. Multipotent mesenchymal stromal cells, also referred to as mesenchymal stem cells (MSCs), appear to hold great promise in regards to a regenerative cell-based therapy for the treatment of these diseases. Currently, more than 200 clinical trials are underway worldwide exploring the use of MSCs for the treatment of a wide range of disorders including bone, cartilage and tendon damage, myocardial infarction, graft-versus-host disease, Crohn’s disease, diabetes, multiple sclerosis, critical limb ischemia and many others. MSCs were first identified by Friendenstein and colleagues as an adherent stromal cell population within the bone marrow with the ability to form clonogenic colonies in vitro. In regards to the basic biology associated with MSCs, there has been tremendous progress towards understanding this cell population’s phenotype and function from a range of tissue sources. Despite enormous progress and an overall increased understanding of MSCs at the molecular and cellular level, several critical questions remain to be answered in regards to the use of these cells in therapeutic applications. Clinically, both autologous and allogenic approaches for the transplantation of MSCs are being explored. Several of the processing steps needed for the clinical application of MSCs, including isolation from various tissues, scalable in vitro expansion, cell banking, dose preparation, quality control parameters, delivery methods and numerous others are being extensively studied. Despite a significant number of ongoing clinical trials, none of the current therapeutic approaches have, at this point, become a standard of care treatment. Although exceptionally promising, the clinical translation of MSC-based therapies is still a work in progress. The extensive number of ongoing clinical trials is expected to provide a clearer path forward for the realization and implementation of MSCs in regenerative medicine. Towards this end, reviews of current clinical trial results and discussions of relevant topics association with the clinical application of MSCs are compiled in this book from some of the leading researchers in this exciting and rapidly advancing field. Although not absolutely all-inclusive, we hope the chapters within this book can promote and enable a better understanding of the translation of MSCs from bench-to-bedside and inspire researchers to further explore this promising and quickly evolving field.


Textbook of Stroke Medicine

Textbook of Stroke Medicine

Author: Michael Brainin

Publisher: Cambridge University Press

Published: 2014-09-11

Total Pages: 425

ISBN-13: 1107047498

DOWNLOAD EBOOK

Fully revised throughout, the new edition of this concise textbook is aimed at doctors preparing to specialize in stroke care.


Biologics and Biosimilars

Biologics and Biosimilars

Author: Xiaodong Feng

Publisher: CRC Press

Published: 2022-06-13

Total Pages: 642

ISBN-13: 0429939280

DOWNLOAD EBOOK

Biologics and Biosimilars: Drug Discovery and Clinical Applications is a systematic integration and evaluation of all aspects of biologics and biosimilars, encompassing research and development, clinical use, global regulation, and more. Biosimilars are biological therapeutic agents designed to imitate a reference biologic with high similarities in structure, efficacy, and safety, but also with potential clinical effective and cost-efficient options for the manufacturers, payers, clinicians, and patients. Most of the top-selling prescription drugs in the current market are biologics, which have revolutionized the treatment strategies and modalities for life-threatening and/or rare diseases. This book outlines the key processes and challenges in drug development, regulations, and clinical applications of biologics, biosimilars, and even interchangeable biosimilars. Global experts in the field discuss essential categories and prototype drugs of biologics and biosimilars in clinical practice such as allergenics, blood and blood components, cell treatment, gene therapy, recombinant therapeutic proteins or peptides, tissues, and vaccines. Additional features: Integrates the latest bench and bedside evidence of drug development and regulations of biologics and biosimilars Contains key study questions for each chapter to guide the readers, as well as drug charts for all therapeutic applications of biologics and biosimilars Presents detailed schematic illustrations to explain the drug development, clinical trials, regulations, and clinical applications of biologics and biosimilars This book is an invaluable tool for health care professional students, providers, and pharmaceutical and health care industries, as well as the public, providing readers with educational updates about the drug development and clinical affairs of biological medications and their similar drugs.


Molecular Imaging I

Molecular Imaging I

Author: Wolfhard Semmler

Publisher: Springer Science & Business Media

Published: 2008-07-15

Total Pages: 298

ISBN-13: 3540727183

DOWNLOAD EBOOK

The aim of this textbook of molecular imaging is to provide an up to date review of this rapidly growing field and to discuss basic methodological aspects necessary for the interpretation of experimental and clinical results. Emphasis is placed on the interplay of imaging technology and probe development, since the physical properties of the imaging approach need to be closely linked with the biologic application of the probe (i.e. nanoparticles and microbubbles). Various chemical strategies are discussed and related to the biologic applications. Reporter-gene imaging is being addressed not only in experimental protocols, but also first clinical applications are discussed. Finally, strategies of imaging to characterize apoptosis and angiogenesis are described and discussed in the context of possible clinical translation.