This book presents an historical overview of the field--from its development to the present--at an accessible mathematical level. This edition features two new chapters--one on factor analysis and the other on the rise of ANOVA usage in psychological research. Written for psychology, as well as other social science students, this book introduces the major personalities and their roles in the development of the field. It provides insight into the disciplines of statistics and experimental design through the examination of the character of its founders and the nature of their views, which were sometimes personal and ideological, rather than objective and scientific. It motivates further study by illustrating the human component of this field, adding dimension to an area that is typically very technical. Intended for advanced undergraduate and/or graduate students in psychology and other social sciences, this book will also be of interest to instructors and/or researchers interested in the origins of this omnipresent discipline.
WILEY-INTERSCIENCE PAPERBACK SERIES The Wiley-Interscience Paperback Series consists of selected books that have been made more accessible to consumers in an effort to increase global appeal and general circulation. With these new unabridged softcover volumes, Wiley hopes to extend the lives of these works by making them available to future generations of statisticians, mathematicians, and scientists. From the Reviews of History of Probability and Statistics and Their Applications before 1750 "This is a marvelous book . . . Anyone with the slightest interest in the history of statistics, or in understanding how modern ideas have developed, will find this an invaluable resource." –Short Book Reviews of ISI
This lively collection of essays examines statistical ideas with an ironic eye for their essence and what their history can tell us for current disputes. The topics range from 17th-century medicine and the circulation of blood, to the cause of the Great Depression, to the determinations of the shape of the Earth and the speed of light.
Presents a survey of the history and evolution of the branch of mathematics that focuses on probability and statistics, including useful applications and notable mathematicians in this area.
This book offers a detailed history of parametric statistical inference. Covering the period between James Bernoulli and R.A. Fisher, it examines: binomial statistical inference; statistical inference by inverse probability; the central limit theorem and linear minimum variance estimation by Laplace and Gauss; error theory, skew distributions, correlation, sampling distributions; and the Fisherian Revolution. Lively biographical sketches of many of the main characters are featured throughout, including Laplace, Gauss, Edgeworth, Fisher, and Karl Pearson. Also examined are the roles played by DeMoivre, James Bernoulli, and Lagrange.
The long-awaited second volume of Anders Hald's history of the development of mathematical statistics. Anders Hald's A History of Probability and Statistics and Their Applications before 1750 is already considered a classic by many mathematicians and historians. This new volume picks up where its predecessor left off, describing the contemporaneous development and interaction of four topics: direct probability theory and sampling distributions; inverse probability by Bayes and Laplace; the method of least squares and the central limit theorem; and selected topics in estimation theory after 1830. In this rich and detailed work, Hald carefully traces the history of parametric statistical inference, the development of the corresponding mathematical methods, and some typical applications. Not surprisingly, the ideas, concepts, methods, and results of Laplace, Gauss, and Fisher dominate his account. In particular, Hald analyzes the work and interactions of Laplace and Gauss and describes their contributions to modern theory. Hald also offers a great deal of new material on the history of the period and enhances our understanding of both the controversies and continuities that developed between the different schools. To enable readers to compare the contributions of various historical figures, Professor Hald has rewritten the original papers in a uniform modern terminology and notation, while leaving the ideas unchanged. Statisticians, probabilists, actuaries, mathematicians, historians of science, and advanced students will find absorbing reading in the author's insightful description of important problems and how they gradually moved toward solution.