Spintronics in Nanoscale Devices

Spintronics in Nanoscale Devices

Author: Eric R. Hedin

Publisher: CRC Press

Published: 2016-04-19

Total Pages: 213

ISBN-13: 9814411701

DOWNLOAD EBOOK

By exploiting the novel properties of quantum dots and nanoscale Aharonov-Bohm rings together with the electronic and magnetic properties of various semiconductor materials and graphene, researchers have conducted numerous theoretical and computational modeling studies and experimental tests that show promising behavior for spintronics applications


Spintronics for Next Generation Innovative Devices

Spintronics for Next Generation Innovative Devices

Author: Katsuaki Sato

Publisher: John Wiley & Sons

Published: 2015-09-28

Total Pages: 275

ISBN-13: 1118751914

DOWNLOAD EBOOK

Spintronics (short for spin electronics, or spin transport electronics) exploits both the intrinsic spin of the electron and its associated magnetic moment, in addition to its fundamental electronic charge, in solid-state devices. Controlling the spin of electrons within a device can produce surprising and substantial changes in its properties. Drawing from many cutting edge fields, including physics, materials science, and electronics device technology, spintronics has provided the key concepts for many next generation information processing and transmitting technologies. This book discusses all aspects of spintronics from basic science to applications and covers: • magnetic semiconductors • topological insulators • spin current science • spin caloritronics • ultrafast magnetization reversal • magneto-resistance effects and devices • spin transistors • quantum information devices This book provides a comprehensive introduction to Spintronics for researchers and students in academia and industry.


Nanoscale Electronic Devices and Their Applications

Nanoscale Electronic Devices and Their Applications

Author: Khurshed Ahmad Shah

Publisher: CRC Press

Published: 2020-08-03

Total Pages: 265

ISBN-13: 1000163563

DOWNLOAD EBOOK

Nanoscale Electronic Devices and Their Applications helps readers acquire a thorough understanding of the fundamentals of solids at the nanoscale level in addition to their applications including operation and properties of recent nanoscale devices. This book includes seven chapters that give an overview of electrons in solids, carbon nanotube devices and their applications, doping techniques, construction and operational details of channel-engineered MOSFETs, and spintronic devices and their applications. Structural and operational features of phase-change memory (PCM), memristor, and resistive random-access memory (ReRAM) are also discussed. In addition, some applications of these phase-change devices to logic designs have been presented. Aimed at senior undergraduate students in electrical engineering, micro-electronics engineering, physics, and device physics, this book:  Covers a wide area of nanoscale devices while explaining the fundamental physics in these devices  Reviews information on CNT two- and three-probe devices, spintronic devices, CNT interconnects, CNT memories, and NDR in CNT FETs  Discusses spin-controlled devices and their applications, multi-material devices, and gates in addition to phase-change devices  Includes rigorous mathematical derivations of the semiconductor physics  Illustrates major concepts thorough discussions and various diagrams


Nanomagnetism and Spintronics

Nanomagnetism and Spintronics

Author: Teruya Shinjo

Publisher: Elsevier

Published: 2013-10-07

Total Pages: 373

ISBN-13: 0444632778

DOWNLOAD EBOOK

The concise and accessible chapters of Nanomagnetism and Spintronics, Second Edition, cover the most recent research in areas of spin-current generation, spin-calorimetric effect, voltage effects on magnetic properties, spin-injection phenomena, giant magnetoresistance (GMR), and tunnel magnetoresistance (TMR). Spintronics is a cutting-edge area in the field of magnetism that studies the interplay of magnetism and transport phenomena, demonstrating how electrons not only have charge but also spin. This second edition provides the background to understand this novel physical phenomenon and focuses on the most recent developments and research relating to spintronics. This exciting new edition is an essential resource for graduate students, researchers, and professionals in industry who want to understand the concepts of spintronics, and keep up with recent research, all in one volume. - Provides a concise, thorough evaluation of current research - Surveys the important findings up to 2012 - Examines the future of devices and the importance of spin current


Spintronics Handbook, Second Edition: Spin Transport and Magnetism

Spintronics Handbook, Second Edition: Spin Transport and Magnetism

Author: Evgeny Y. Tsymbal

Publisher: CRC Press

Published: 2019-05-09

Total Pages: 635

ISBN-13: 0429750889

DOWNLOAD EBOOK

Spintronics Handbook, Second Edition offers an update on the single most comprehensive survey of the two intertwined fields of spintronics and magnetism, covering the diverse array of materials and structures, including silicon, organic semiconductors, carbon nanotubes, graphene, and engineered nanostructures. It focuses on seminal pioneering work, together with the latest in cutting-edge advances, notably extended discussion of two-dimensional materials beyond graphene, topological insulators, skyrmions, and molecular spintronics. The main sections cover physical phenomena, spin-dependent tunneling, control of spin and magnetism in semiconductors, and spin-based applications.


Semiconductor Spintronics and Quantum Computation

Semiconductor Spintronics and Quantum Computation

Author: D.D. Awschalom

Publisher: Springer Science & Business Media

Published: 2013-04-17

Total Pages: 321

ISBN-13: 366205003X

DOWNLOAD EBOOK

The past few decades of research and development in solid-state semicon ductor physics and electronics have witnessed a rapid growth in the drive to exploit quantum mechanics in the design and function of semiconductor devices. This has been fueled for instance by the remarkable advances in our ability to fabricate nanostructures such as quantum wells, quantum wires and quantum dots. Despite this contemporary focus on semiconductor "quantum devices," a principal quantum mechanical aspect of the electron - its spin has it accounts for an added quan largely been ignored (except in as much as tum mechanical degeneracy). In recent years, however, a new paradigm of electronics based on the spin degree of freedom of the electron has begun to emerge. This field of semiconductor "spintronics" (spin transport electron ics or spin-based electronics) places electron spin rather than charge at the very center of interest. The underlying basis for this new electronics is the intimate connection between the charge and spin degrees of freedom of the electron via the Pauli principle. A crucial implication of this relationship is that spin effects can often be accessed through the orbital properties of the electron in the solid state. Examples for this are optical measurements of the spin state based on the Faraday effect and spin-dependent transport measure ments such as giant magneto-resistance (GMR). In this manner, information can be encoded in not only the electron's charge but also in its spin state, i. e.


Nanoscale Materials and Devices for Electronics, Photonics and Solar Energy

Nanoscale Materials and Devices for Electronics, Photonics and Solar Energy

Author: Anatoli Korkin

Publisher: Springer

Published: 2015-08-26

Total Pages: 291

ISBN-13: 3319186337

DOWNLOAD EBOOK

This book presents research dedicated to solving scientific and technological problems in many areas of electronics, photonics and renewable energy. Progress in information and renewable energy technologies requires miniaturization of devices and reduction of costs, energy and material consumption. The latest generation of electronic devices is now approaching nanometer scale dimensions; new materials are being introduced into electronics manufacturing at an unprecedented rate; and alternative technologies to mainstream CMOS are evolving. The low cost of natural energy sources have created economic barriers to the development of alternative and more efficient solar energy systems, fuel cells and batteries. Nanotechnology is widely accepted as a source of potential solutions in securing future progress for information and energy technologies. Nanoscale Materials and Devices for Electronics, Photonics and Solar Energy features chapters that cover the following areas: atomic scale materials design, bio- and molecular electronics, high frequency electronics, fabrication of nanodevices, magnetic materials and spintronics, materials and processes for integrated and subwave optoelectronics, nanoCMOS, new materials for FETs and other devices, nanoelectronics system architecture, nano optics and lasers, non-silicon materials and devices, chemical and biosensors,quantum effects in devices, nano science and technology applications in the development of novel solar energy devices, and fuel cells and batteries.


Spin Current

Spin Current

Author: Sadamichi Maekawa

Publisher: Oxford University Press

Published: 2017

Total Pages: 541

ISBN-13: 0198787073

DOWNLOAD EBOOK

In a new branch of physics and technology, called spin-electronics or spintronics, the flow of electrical charge (usual current) as well as the flow of electron spin, the so-called "spin current", are manipulated and controlled together. This book is intended to provide an introduction and guide to the new physics and applications of spin current.


Introduction to Spintronics

Introduction to Spintronics

Author: Supriyo Bandyopadhyay

Publisher: CRC Press

Published: 2008-03-20

Total Pages: 526

ISBN-13: 1420004743

DOWNLOAD EBOOK

Using spin to replace or augment the role of charge in signal processing devices, computing systems and circuits may improve speed, power consumption, and device density in some cases—making the study of spinone of the fastest-growing areas in micro- and nanoelectronics. With most of the literature on the subject still highly advanced and heavily theoretical, the demand for a practical introduction to the concepts relating to spin has only now been filled. Explains effects such as giant magnetoresistance, the subject of the 2007 Nobel Prize in physics Introduction to Spintronics is an accessible, organized, and progressive presentation of the quantum mechanical concept of spin. The authors build a foundation of principles and equations underlying the physics, transport, and dynamics of spin in solid state systems. They explain the use of spin for encoding qubits in quantum logic processors; clarify how spin-orbit interaction forms the basis for certain spin-based devices such as spintronic field effect transistors; and discuss the effects of magnetic fields on spin-based device performance. Covers active hybrid spintronic devices, monolithic spintronic devices, passive spintronic devices, and devices based on the giant magnetoresistance effect The final chapters introduce the burgeoning field of spin-based reversible logic gates, spintronic embodiments of quantum computers, and other topics in quantum mechanics that have applications in spintronics. An Introduction to Spintronics provides the knowledge and understanding of the field needed to conduct independent research in spintronics.


Nanoscale Silicon Devices

Nanoscale Silicon Devices

Author: Shunri Oda

Publisher: CRC Press

Published: 2018-09-03

Total Pages: 288

ISBN-13: 1482228688

DOWNLOAD EBOOK

Is Bigger Always Better? Explore the Behavior of Very Small Devices as Described by Quantum Mechanics Smaller is better when it comes to the semiconductor transistor. Nanoscale Silicon Devices examines the growth of semiconductor device miniaturization and related advances in material, device, circuit, and system design, and highlights the use of device scaling within the semiconductor industry. Device scaling, the practice of continuously scaling down the size of metal-oxide-semiconductor field-effect transistors (MOSFETs), has significantly improved the performance of small computers, mobile phones, and similar devices. The practice has resulted in smaller delay time and higher device density in a chip without an increase in power consumption. This book covers recent advancements and considers the future prospects of nanoscale silicon (Si) devices. It provides an introduction to new concepts (including variability in scaled MOSFETs, thermal effects, spintronics-based nonvolatile computing systems, spin-based qubits, magnetoelectric devices, NEMS devices, tunnel FETs, dopant engineering, and single-electron transfer), new materials (such as high-k dielectrics and germanium), and new device structures in three dimensions. It covers the fundamentals of such devices, describes the physics and modeling of these devices, and advocates further device scaling and minimization of energy consumption in future large-scale integrated circuits (VLSI). Additional coverage includes: Physics of nm scaled devices in terms of quantum mechanics Advanced 3D transistors: tri-gate structure and thermal effects Variability in scaled MOSFET Spintronics on Si platform NEMS devices for switching, memory, and sensor applications The concept of ballistic transport The present status of the transistor variability and more An indispensable resource, Nanoscale Silicon Devices serves device engineers and academic researchers (including graduate students) in the fields of electron devices, solid-state physics, and nanotechnology.