The book presents developments and applications of these methods, such as NMR, mass, and others, including their applications in pharmaceutical and biomedical analyses. The book is divided into two sections. The first section covers spectroscopic methods, their applications, and their significance as characterization tools; the second section is dedicated to the applications of spectrophotometric methods in pharmaceutical and biomedical analyses. This book would be useful for students, scholars, and scientists engaged in synthesis, analyses, and applications of materials/polymers.
Analytical Methods for Pesticides and Plant Growth Regulators, Volume IX: Spectroscopic Methods of Analysis covers the progress in spectroscopic methods for pesticide analysis. The book discusses the use of high-pressure liquid chromatography coupled to mass spectrometry for the analysis of heat-labile compounds; and the applications of nuclear magnetic resonance spectroscopy and related techniques, and visible and ultraviolet spectrophotometry. The text also describes the applications of spectrophotofluorometry, infrared spectrometry, and a collection of infrared spectra of important pesticides. Toxicologists, chemists, and people working in pesticide laboratories will find the book invaluable.
Given the inherent complexity of food products, most instrumental techniques employed for quality and authenticity evaluation (e.g., chromatographic methods) are time demanding, expensive, and involve a considerable amount of manual labor. Therefore, there has been an increasing interest in simpler, faster, and reliable analytical methods for assessing food quality attributes. Spectroscopic Methods in Food Analysis presents the basic concepts of spectroscopic methods, together with a discussion on the most important applications in food analysis. The determination of product quality and authenticity and the detection of adulteration are major issues in the food industry, causing concern among consumers and special attention among food manufacturers. As such, this book explains why spectroscopic methods have been extensively employed to the analysis of food products as they often require minimal or no sample preparation, provide rapid and on-line analysis, and have the potential to run multiple tests on a single sample (i.e., non-destructive). This book consists of concepts related to food quality and authenticity, that are quite broad, given the different demands of the manufacturer, the consumer, the surveillance and the legislative bodies that ultimately provide healthy and safe products.
A unique textbook, aimed at undergraduate students, containing large numbers of spectra, problems and marginal notes, specifically chosen to highlight the points being discussed.
The use of spectroscopy in food analysis is growing and this informative volume presents the application of advanced spectroscopic techniques in the analysis of food quality. The spectroscopic techniques include visible and NIR spectroscopy, FTIR spectroscopy and Laser-induced Breakdown Spectroscopy (LIBS). A wide range of food and beverage items are covered including tea, coffee and wine. The chapters will highlight the potential of spectroscopic techniques to enrich the food quality analysis experience when coupled with artificial intelligence and machine learning and provide a good opportunity to assess and critically lay out any future prospects. Different chapters have been written using a bottom-up approach that suits the needs of novice researchers and at the same time offers a smooth read for professionals. The book will also be of use to those developing spectroscopic facilities providing a useful cross comparison of the various techniques.
Written by an international panel of professional and academic peers, the book provides the engineer and technologist working in research, development and operations in the food industry with critical and readily accessible information on the art and science of infrared spectroscopy technology. The book should also serve as an essential reference source to undergraduate and postgraduate students and researchers in universities and research institutions.Infrared (IR) Spectroscopy deals with the infrared part of the electromagnetic spectrum. It measure the absorption of different IR frequencies by a sample positioned in the path of an IR beam. Currently, infrared spectroscopy is one of the most common spectroscopic techniques used in the food industry. With the rapid development in infrared spectroscopic instrumentation software and hardware, the application of this technique has expanded into many areas of food research. It has become a powerful, fast, and non-destructive tool for food quality analysis and control.Infrared Spectroscopy for Food Quality Analysis and Control reflects this rapid technology development. The book is divided into two parts. Part I addresses principles and instruments, including theory, data treatment techniques, and infrared spectroscopy instruments. Part II covers the application of IRS in quality analysis and control for various foods including meat and meat products, fish and related products, and others. - Explores this rapidly developing, powerful and fast non-destructive tool for food quality analysis and control - Presented in two Parts -- Principles and Instruments, including theory, data treatment techniques, and instruments, and Application in Quality Analysis and Control for various foods making it valuable for understanding and application - Fills a need for a comprehensive resource on this area that includes coverage of NIR and MVA
For almost a decade, quantitative NMR spectroscopy (qNMR) has been established as valuable tool in drug analysis. In all disciplines, i. e. drug identification, impurity profiling and assay, qNMR can be utilized. Separation techniques such as high performance liquid chromatography, gas chromatography, super fluid chromatography and capillary electrophoresis techniques, govern the purity evaluation of drugs. However, these techniques are not always able to solve the analytical problems often resulting in insufficient methods. Nevertheless such methods find their way into international pharmacopoeias. Thus, the aim of the book is to describe the possibilities of qNMR in pharmaceutical analysis. Beside the introduction to the physical fundamentals and techniques the principles of the application in drug analysis are described: quality evaluation of drugs, polymer characterization, natural products and corresponding reference compounds, metabolism, and solid phase NMR spectroscopy for the characterization drug substances, e.g. the water content, polymorphism, and drug formulations, e.g. tablets, powders. This part is accompanied by more special chapters dealing with representative examples. They give more detailed information by means of concrete examples. Combines theory, techniques, and concrete applications—all of which closely resemble the laboratory experience Considers international pharmacopoeias, addressing the concern for licensing Features the work of academics and researchers, appealing to a broad readership
The three volumes in Methods in Molecular Biology covering Physical Methods of Analysis (vol. 1, Spectroscopic Methods and Analyses: NMR, Mass Spectrometry, and Metalloprotein Techniques; vol. 2, Optical Spectroscopy and Macroscopic Techniques; vol. 3, Cryst- lographic Methods and Techniques) differ from others in this series in several ways. Each volume covers a group of techniques for the char- terization of biological molecules and their interactions that involve the application of modern techniques of physical chemistry. These techniques by and large do not lend themselves to the "hands-on" approach and cannot usually be carried out by the molecular biologist alone, but most often require collaboration with a specialist. The biologist or biochemist contemplating such a collaboration may feel somewhat at a distance from the experimental work and further isolated by the use of the jargons of analytical and physical chemistry. Physical methods have been used in molecular biology from the earliest days, from simple applications of optical spectroscopy to the complexity of X-ray crystallography, and the full range of these me- ods will be covered over the three volumes. The methods dealt with in this first volume have largely developed from beginnings in small molecule chemistry to the point where they play a valuable role in the characterization of biological macromolecules.
Quantitative elucidation of structural, energetic and dynamic aspects of macromolecular interactions is indispensable for understanding the functional activities of biomolecules and their interactions. The optical spectroscopic methods are not confined to small molecules or macromolecules but permit the studies of even the largest biological systems in their full splendor, including the living cell. In, Spectroscopic Methods of Analysis: Methods and Protocols, expert researchers in the field detail many of the methods which are now commonly used to study properties of individual macromolecules, their complexes, organelles, and cells, using optical spectroscopic techniques. These include methods and approaches for experimental and theoretical analyses of fluorescence properties of the examined systems, single molecule approaches, electronic absorption, and electro-optical analyses of macromolecular interactions, structures, and dynamics. Written in the highly successful Methods in Molecular Biology(tm) series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step laboratory protocols, and key tips on troubleshooting and avoiding known pitfalls. Authoritative and practical, Spectroscopic Methods of Analysis : Methods and Protocols seeks to aid scientists in the further study of optical spectroscopic methods.
Dealing with the principles of calibration--both the theoretical and mathematical constructs which relate features of calibration equations to the physical phenomena that affect instruments and samples used on generating information. Among derivations in leading spectroscopic and statistical literature, numerous necessary mathematical derivations have been specifically designed for this book. Covers the practical aspects of generating a calibration equation including how to recognize and deal with various types of problems affecting calibration dataset, relating theoretical ideas, and their affect on data and how to deal with unusual situations.