This book constitutes the refereed proceedings of the 13th Conference on Towards Autonomous Robotic Systems, TAROS 2012 and the 15th Robot World Congress, FIRA 2012, held as joint conference in Bristol, UK, in August 2012. The 36 revised full papers presented together with 25 extended abstracts were carefully reviewed and selected from 89 submissions. The papers cover various topics in the field of autonomous robotics.
There have been major recent advances in robotic systems that can replace humans in undertaking hazardous activities in demanding or dangerous environments. Published in association with the CLAWAR (Climbing and Walking Robots and Associated Technologies Association) (www.clawar.org), this important book reviews the development of robotic systems for de-mining and other risky activities such as fire-fighting.Part one provides an overview of the use of robots for humanitarian de-mining work. Part two discusses the development of sensors for mine detection whilst Part thee reviews developments in both teleoperated and autonomous robots. Building on the latter, Part four concentrates on robot autonomous navigation. The final part of the book reviews research on multi-agent-systems (MAS) and the multi-robotics-systems (MRS), promising tools that take into account modular design of mobile robots and the use of several robots in multi-task missions.With its distinguished editors and international team of contributors, Using robots in hazardous environments: landmine detection, de-mining and other applications is a standard reference for all those researching the use of robots in hazardous environments as well as government and other agencies wishing to use robots for dangerous tasks such as landmine detection and disposal. - Reviews the development of robotic systems for de-mining and other risky activities - Discusses the development and applications of sensors for mine detection using different robotic systems - Examines research on multi-agent-systems and multi-robotics systems
The topics covered in this book range from modeling and programming languages and environments, via approaches for design and verification, to issues of ethics and regulation. In terms of techniques, there are results on model-based engineering, product lines, mission specification, component-based development, simulation, testing, and proof. Applications range from manufacturing to service robots, to autonomous vehicles, and even robots than evolve in the real world. A final chapter summarizes issues on ethics and regulation based on discussions from a panel of experts. The origin of this book is a two-day event, entitled RoboSoft, that took place in November 2019, in London. Organized with the generous support of the Royal Academy of Engineering and the University of York, UK, RoboSoft brought together more than 100 scientists, engineers and practitioners from all over the world, representing 70 international institutions. The intended readership includes researchers and practitioners with all levels of experience interested in working in the area of robotics, and software engineering more generally. The chapters are all self-contained, include explanations of the core concepts, and finish with a discussion of directions for further work. Chapters 'Towards Autonomous Robot Evolution', 'Composition, Separation of Roles and Model-Driven Approaches as Enabler of a Robotics Software Ecosystem' and 'Verifiable Autonomy and Responsible Robotics' are available open access under a Creative Commons Attribution 4.0 International License via link.springer.com.
The presence of mobile robots in diverse scenarios is considerably increasing to perform a variety of tasks. Among them, many developments have occurred in the fields of ground, underwater, and flying robotics. Independent of the environment where they move, navigation is a fundamental ability of mobile robots so that they can autonomously complete high-level tasks. This problem can be efficiently addressed through the following actions: First, it is necessary to perceive the environment in which the robot has to move, and extract some relevant information (mapping problem). Second, the robot must be able to estimate its position and orientation within this environment (localization problem). With this information, a trajectory toward the target points must be planned (path planning), and the vehicle must be reactively guided along this trajectory considering either possible changes or interactions with the environment or with the user (control). Given this information, this book introduces current frameworks in these fields (mapping, localization, path planning, and control) and, in general, approaches to any problem related to the navigation of mobile robots, such as odometry, exploration, obstacle avoidance, and simulation.
The aim of the book is to introduce the state-of-the-art technologies in the field of robotics, mechatronics and automation in agriculture in order to summarize and review the improvements in the methodologies in agricultural robotics. Advances made in the past decades are described, including robotics for agriculture, mechatronics for agriculture, kinematics, dynamics and control analysis of agricultural robotics, and a wide range of topics in the field of robotics, mechatronics and automation for agricultural applications.
Autonomous robots are robots which can perform desired tasks in unstructured environments without continuous human guidance. Many kinds of robots have some degree of autonomy. Different robots can be autonomous in different ways. A high degree of autonomy is particularly desirable in fields such as space exploration, where communication delays and interruptions are unavoidable. Some modern factory robots are "autonomous" within the strict confines of their direct environment. The exact orientation and position of the next object of work and (in the more advanced factories) even the type of object and the required task must be determined. This can vary unpredictably (at least from the robot's point of view). One important area of robotics research is to enable the robot to cope with its environment whether this be on land, underwater, in the air, underground, or in space. This book presents the latest research from around the globe.
Mobile robotics is a challenging field with great potential. It covers disciplines including electrical engineering, mechanical engineering, computer science, cognitive science, and social science. It is essential to the design of automated robots, in combination with artificial intelligence, vision, and sensor technologies. Mobile robots are widely used for surveillance, guidance, transportation and entertainment tasks, as well as medical applications. This Special Issue intends to concentrate on recent developments concerning mobile robots and the research surrounding them to enhance studies on the fundamental problems observed in the robots. Various multidisciplinary approaches and integrative contributions including navigation, learning and adaptation, networked system, biologically inspired robots and cognitive methods are welcome contributions to this Special Issue, both from a research and an application perspective.
This collection of twenty-three timely contributions covers a well-selected repertory of topics within the autonomous systems field. The book discusses a range of design, construction, control, and operation problems along with a multiplicity of well-established and novel solutions.
Rapid technological advances in the field of robotics and autonomous systems (RAS) are transforming the international security environment and the conduct of contemporary conflict. Bringing together leading experts from across the globe, this book provides timely analysis on the current and future challenges associated with greater utilization of RAS by states, their militaries, and a host of non-state actors. Technologically driven change in the international security environment can come about through the development of one significant technology, such as the atomic bomb. At other times, it results from several technologies maturing at roughly the same pace. This second image better reflects the rapid technological change that is taking us into the robotics age. Many of the chapters in this edited volume explore unresolved ethical, legal, and operational challenges that are only likely to become more complex as RAS technology matures. Though the precise ways in which the impact of autonomous systems – both physical and non-physical – will be felt in the long-run is hidden from us, attempting to anticipate the direction of travel remains an important undertaking and one that this book makes a critical effort to contend with. The chapters in this book were originally published as a special issue of the journal Small Wars & Insurgencies.
This edited book covers space robotics and autonomous systems (space RAS) from technologies to advances and applications including sensing and perception, mobility, manipulations, high-level autonomy, human-robot interaction, multi-modal interaction, modelling and simulation, and safety and trust.