The power Heronian aggregation (PHA) operator can use the advantages of power average and the Heronian mean operator, which together could take into account the interrelationship of the aggregated arguments, and therefore alleviate the e ects caused by unreasonable data through considering the support degree between input arguments. However, PHA operators cannot be used to process single-valued neutrosophic numbers (SVNNs), which is significant for extending it to SVNNs.
The power average (PA) has the property that it can eliminate the influence of inconvenient data and the Muirhead mean (MM) operator takes the correlations among the input arguments, and the single valued neutrosophic (SVN) set is a better tool to deal with incomplete, inconsistent and indeterminate information than fuzzy set (FS) and intuitionistic FS (IFS). Thus the main goal of this article is to develop a few new operators for aggregating SVN information and apply them to multiple-attribute group decision making (MAGDM). To fully utilize the advantages ofMMoperator and PA operator, we develop the single-valued neutrosophic power MM (SVNPMM) operator, weighted single-valued neutrosophic power MM (WSVNPMM) operator, single-valued neutrosophic power dual MM (SVNPDMM) operator and weighted single-valued neutrosophic power dual MM (WSVNPDMM) operator, and discuss their essential properties, particular cases about the parameter vector. The obvious advantages of the proposed operators are that it can eliminate the influence of inconvenient data and can take the correlation among input data at the same time. Moreover, based on the developed aggregation operators, a novel technique to MAGDM problem is proposed. Lastly, a numerical example is provided to show the efficiency and realism of the proposed technique.
Neutrosophic cubic sets can deal with the complex information by combining the neutrosophic sets and cubic sets, the power average (PA) can weaken some effects of awkward data from biased decision makers, and Heronian mean (HM) can deal with the interrelationship between the aggregated attributes or arguments. In this article, in order to consider the advantages of the PA and HM, we combined and extended them to process neutrosophic cubic information. Firstly, we defined a distance measure for neutrosophic cubic numbers, then we presented the neutrosophic cubic power Heronian aggregation operator and neutrosophic cubic power weighted Heronian aggregation operator, and some characters and special cases of these new aggregation operators were investigated. Furthermore, we gave a new approach for multiattribute group decision making based on new proposed operators. Finally, two examples were given to explain the validity and advantages of the developed approach by comparing with the existing method.
Single-valued neutrosophic set (SVN) can valid depict the incompleteness, nondeterminacy and inconsistency of evaluation opinion, and the Power average (PA) operator can take into account the correlation of multiple discussed data. Meanwhile, Archimedean copula and co-copula (ACC) can signicant generate operational laws based upon diverse copulas.
Recently, neutrosophic sets are found to be more general and useful to express incomplete, indeterminate and inconsistent information. The purpose of this paper is to introduce new aggregation operators based on logarithmic operations and to develop a multi-criteria decision-making approach to study the interaction between the input argument under the single valued neutrosophic (SVN) environment.
Safety is the fundamental guarantee for the sustainable development of mining enterprises. As the safety evaluation of mines is a complex system engineering project, consistent and inconsistent, even hesitant evaluation information may be contained simultaneously. Linguistic neutrosophic numbers (LNNs), as the extensions of linguistic terms, are effective means to entirely and qualitatively convey such evaluation information with three independent linguistic membership functions. The aim of our work is to investigate several mean operators so that the safety evaluation issues of mines are addressed under linguistic neutrosophic environment.
This book introduces readers to the fundamentals of transportation problems under the fuzzy environment and its extensions. It also discusses the limitations and drawbacks of (1) recently proposed aggregation operators under the fuzzy environment and its various extensions; (2) recently proposed methods for solving transportation problems under the fuzzy environment; and (3) recently proposed methods for solving transportation problems under the intuitionistic fuzzy environment. In turn, the book proposes simplified methods to overcome these limitations.
This eleventh volume of Collected Papers includes 90 papers comprising 988 pages on Physics, Artificial Intelligence, Health Issues, Decision Making, Economics, Statistics, written between 2001-2022 by the author alone or in collaboration with the following 84 co-authors (alphabetically ordered) from 19 countries: Abhijit Saha, Abu Sufian, Jack Allen, Shahbaz Ali, Ali Safaa Sadiq, Aliya Fahmi, Atiqa Fakhar, Atiqa Firdous, Sukanto Bhattacharya, Robert N. Boyd, Victor Chang, Victor Christianto, V. Christy, Dao The Son, Debjit Dutta, Azeddine Elhassouny, Fazal Ghani, Fazli Amin, Anirudha Ghosha, Nasruddin Hassan, Hoang Viet Long, Jhulaneswar Baidya, Jin Kim, Jun Ye, Darjan Karabašević, Vasilios N. Katsikis, Ieva Meidutė-Kavaliauskienė, F. Kaymarm, Nour Eldeen M. Khalifa, Madad Khan, Qaisar Khan, M. Khoshnevisan, Kifayat Ullah,, Volodymyr Krasnoholovets, Mukesh Kumar, Le Hoang Son, Luong Thi Hong Lan, Tahir Mahmood, Mahmoud Ismail, Mohamed Abdel-Basset, Siti Nurul Fitriah Mohamad, Mohamed Loey, Mai Mohamed, K. Mohana, Kalyan Mondal, Muhammad Gulfam, Muhammad Khalid Mahmood, Muhammad Jamil, Muhammad Yaqub Khan, Muhammad Riaz, Nguyen Dinh Hoa, Cu Nguyen Giap, Nguyen Tho Thong, Peide Liu, Pham Huy Thong, Gabrijela Popović, Surapati Pramanik, Dmitri Rabounski, Roslan Hasni, Rumi Roy, Tapan Kumar Roy, Said Broumi, Saleem Abdullah, Muzafer Saračević, Ganeshsree Selvachandran, Shariful Alam, Shyamal Dalapati, Housila P. Singh, R. Singh, Rajesh Singh, Predrag S. Stanimirović, Kasan Susilo, Dragiša Stanujkić, Alexandra Şandru, Ovidiu Ilie Şandru, Zenonas Turskis, Yunita Umniyati, Alptekin Ulutaș, Maikel Yelandi Leyva Vázquez, Binyamin Yusoff, Edmundas Kazimieras Zavadskas, Zhao Loon Wang.
Schweizer–Sklar (SS) operation can make information aggregation more flexible, and the Muirhead mean (MM) operator can take into account the correlation between inputs by a variable parameter. Because traditional MM is only available for real numbers and single-valued neutrosophic set (SVNS) can better express incomplete and uncertain information in decision systems, in this paper, we applied MM operators to single-valued neutrosophic sets (SVNSs) and presented two new MM aggregation operators with the SS operation, i.e., a single-valued neutrosophic SS Muirhead mean (SVNSSMM) operator and a weighted single-valued neutrosophic SS MM (WSVNSSMM) operator.