Singular Quadratic Forms in Perturbation Theory

Singular Quadratic Forms in Perturbation Theory

Author: Volodymyr Koshmanenko

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 316

ISBN-13: 9401146195

DOWNLOAD EBOOK

The notion of singular quadratic form appears in mathematical physics as a tool for the investigation of formal expressions corresponding to perturbations devoid of operator sense. Numerous physical models are based on the use of Hamiltonians containing perturba tion terms with singular properties. Typical examples of such expressions are Schrodin ger operators with O-potentials (-~ + AD) and Hamiltonians in quantum field theory with perturbations given in terms of operators of creation and annihilation (P(


The Method of Rigged Spaces in Singular Perturbation Theory of Self-Adjoint Operators

The Method of Rigged Spaces in Singular Perturbation Theory of Self-Adjoint Operators

Author: Volodymyr Koshmanenko

Publisher: Birkhäuser

Published: 2016-07-08

Total Pages: 251

ISBN-13: 3319295357

DOWNLOAD EBOOK

This monograph presents the newly developed method of rigged Hilbert spaces as a modern approach in singular perturbation theory. A key notion of this approach is the Lax-Berezansky triple of Hilbert spaces embedded one into another, which specifies the well-known Gelfand topological triple. All kinds of singular interactions described by potentials supported on small sets (like the Dirac δ-potentials, fractals, singular measures, high degree super-singular expressions) admit a rigorous treatment only in terms of the equipped spaces and their scales. The main idea of the method is to use singular perturbations to change inner products in the starting rigged space, and the construction of the perturbed operator by the Berezansky canonical isomorphism (which connects the positive and negative spaces from a new rigged triplet). The approach combines three powerful tools of functional analysis based on the Birman-Krein-Vishik theory of self-adjoint extensions of symmetric operators, the theory of singular quadratic forms, and the theory of rigged Hilbert spaces. The book will appeal to researchers in mathematics and mathematical physics studying the scales of densely embedded Hilbert spaces, the singular perturbations phenomenon, and singular interaction problems.


Operator Theory and Related Topics

Operator Theory and Related Topics

Author: V.M. Adamyan

Publisher: Springer Science & Business Media

Published: 2000-03-01

Total Pages: 458

ISBN-13: 9783764362881

DOWNLOAD EBOOK

The present book is the second of the two volume Proceedings of the Mark Krein International Conference on Operator Theory and Applications. This conference, which was dedicated to the 90th Anniversary of the prominent mathematician Mark Krein, was held in Odessa, Ukraine from 18-22 August, 1997. The conference focused on the main ideas, methods, results, and achievements of M. G. Krein. This second volume is devoted to operator theory and related topics. It opens with the bibliography of M. G. Krein and a number of survey papers about his work. The main part of the book consists of original research papers presenting the state of the art in operator theory and its applications. The first volume of these proceedings, entitled Differential Operators and related Topics, concerns the other aspects of the conference. The two volumes will be of interest to a wide-range of readership in pure and applied mathematics, physics and engineering sciences. Table of Contents Preface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii Bibliography of Mark Grigorevich Krein . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix Review papers: M. G. Krein's Contributions to Prediction Theory H. Dym M. G. Krein's Contribution to the Moment. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 AA Nudelman Research Papers: Solution of the Truncated Matrix Hamburger Moment Problem according to M. G. Krein . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 Y. M. Adamyan and I. M. Tkachenko Extreme Points of a Positive Operator Ball . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 T. Ando M-accretive Extensions of Sectorial Operators and Krein Spaces . . . . . . . . . 67 Y. M. Arlinskii A Simple Proof of the Continuous Commutant Lifting Theorem . . . . . . . . . . 83 R. Bruzual and M.


Stochastic Processes, Physics and Geometry: New Interplays. II

Stochastic Processes, Physics and Geometry: New Interplays. II

Author: Sergio Albeverio

Publisher: American Mathematical Soc.

Published: 2000

Total Pages: 650

ISBN-13: 9780821819609

DOWNLOAD EBOOK

This volume and Stochastic Processes, Physics and Geometry: New Interplays I present state-of-the-art research currently unfolding at the interface between mathematics and physics. Included are select articles from the international conference held in Leipzig (Germany) in honor of Sergio Albeverio's sixtieth birthday. The theme of the conference, "Infinite Dimensional (Stochastic) Analysis and Quantum Physics", was chosen to reflect Albeverio's wide-ranging scientific interests. The articles in these books reflect that broad range of interests and provide a detailed overview highlighting the deep interplay among stochastic processes, mathematical physics, and geometry. The contributions are written by internationally recognized experts in the fields of stochastic analysis, linear and nonlinear (deterministic and stochastic) PDEs, infinite dimensional analysis, functional analysis, commutative and noncommutative probability theory, integrable systems, quantum and statistical mechanics, geometric quantization, and neural networks. Also included are applications in biology and other areas. Most of the contributions are high-level research papers. However, there are also some overviews on topics of general interest. The articles selected for publication in these volumes were specifically chosen to introduce readers to advanced topics, to emphasize interdisciplinary connections, and to stress future research directions. Volume I contains contributions from invited speakers; Volume II contains additional contributed papers. Members of the Canadian Mathematical Society may order at the AMS member price.


Spectral Theory of Schrodinger Operators

Spectral Theory of Schrodinger Operators

Author: Rafael del Río

Publisher: American Mathematical Soc.

Published: 2004

Total Pages: 264

ISBN-13: 0821832972

DOWNLOAD EBOOK

This volume gathers the articles based on a series of lectures from a workshop held at the Institute of Applied Mathematics of the National University of Mexico. The aim of the book is to present to a non-specialized audience the basic tools needed to understand and appreciate new trends of research on Schrodinger operator theory. Topics discussed include various aspects of the spectral theory of differential operators, the theory of self-adjoint operators, finite rank perturbations, spectral properties of random Schrodinger operators, and scattering theory for Schrodinger operators. The material is suitable for graduate students and research mathematicians interested in differential operators, in particular, spectral theory of Schrodinger operators.


Sturm?Liouville Operators, Their Spectral Theory, and Some Applications

Sturm?Liouville Operators, Their Spectral Theory, and Some Applications

Author: Fritz Gesztesy

Publisher: American Mathematical Society

Published: 2024-09-24

Total Pages: 946

ISBN-13: 1470476665

DOWNLOAD EBOOK

This book provides a detailed treatment of the various facets of modern Sturm?Liouville theory, including such topics as Weyl?Titchmarsh theory, classical, renormalized, and perturbative oscillation theory, boundary data maps, traces and determinants for Sturm?Liouville operators, strongly singular Sturm?Liouville differential operators, generalized boundary values, and Sturm?Liouville operators with distributional coefficients. To illustrate the theory, the book develops an array of examples from Floquet theory to short-range scattering theory, higher-order KdV trace relations, elliptic and algebro-geometric finite gap potentials, reflectionless potentials and the Sodin?Yuditskii class, as well as a detailed collection of singular examples, such as the Bessel, generalized Bessel, and Jacobi operators. A set of appendices contains background on the basics of linear operators and spectral theory in Hilbert spaces, Schatten?von Neumann classes of compact operators, self-adjoint extensions of symmetric operators, including the Friedrichs and Krein?von Neumann extensions, boundary triplets for ODEs, Krein-type resolvent formulas, sesquilinear forms, Nevanlinna?Herglotz functions, and Bessel functions.


Mathematical Physics, Spectral Theory and Stochastic Analysis

Mathematical Physics, Spectral Theory and Stochastic Analysis

Author: Michael Demuth

Publisher: Springer Science & Business Media

Published: 2014-07-08

Total Pages: 344

ISBN-13: 3034805918

DOWNLOAD EBOOK

This volume presents self-contained survey articles on modern research areas written by experts in their fields. The topics are located at the interface of spectral theory, theory of partial differential operators, stochastic analysis, and mathematical physics. The articles are accessible to graduate students and researches from other fields of mathematics or physics while also being of value to experts, as they report on the state of the art in the respective fields.


Boundary Value Problems, Weyl Functions, and Differential Operators

Boundary Value Problems, Weyl Functions, and Differential Operators

Author: Jussi Behrndt

Publisher: Springer Nature

Published: 2020-01-03

Total Pages: 775

ISBN-13: 3030367142

DOWNLOAD EBOOK

This open access book presents a comprehensive survey of modern operator techniques for boundary value problems and spectral theory, employing abstract boundary mappings and Weyl functions. It includes self-contained treatments of the extension theory of symmetric operators and relations, spectral characterizations of selfadjoint operators in terms of the analytic properties of Weyl functions, form methods for semibounded operators, and functional analytic models for reproducing kernel Hilbert spaces. Further, it illustrates these abstract methods for various applications, including Sturm-Liouville operators, canonical systems of differential equations, and multidimensional Schrödinger operators, where the abstract Weyl function appears as either the classical Titchmarsh-Weyl coefficient or the Dirichlet-to-Neumann map. The book is a valuable reference text for researchers in the areas of differential equations, functional analysis, mathematical physics, and system theory. Moreover, thanks to its detailed exposition of the theory, it is also accessible and useful for advanced students and researchers in other branches of natural sciences and engineering.


Festschrift Masatoshi Fukushima: In Honor Of Masatoshi Fukushima's Sanju

Festschrift Masatoshi Fukushima: In Honor Of Masatoshi Fukushima's Sanju

Author: Zhen-qing Chen

Publisher: World Scientific

Published: 2014-11-27

Total Pages: 618

ISBN-13: 981459654X

DOWNLOAD EBOOK

This book contains original research papers by leading experts in the fields of probability theory, stochastic analysis, potential theory and mathematical physics. There is also a historical account on Masatoshi Fukushima's contribution to mathematics, as well as authoritative surveys on the state of the art in the field.


Self-Adjoint Extension Schemes and Modern Applications to Quantum Hamiltonians

Self-Adjoint Extension Schemes and Modern Applications to Quantum Hamiltonians

Author: Matteo Gallone

Publisher: Springer Nature

Published: 2023-04-04

Total Pages: 557

ISBN-13: 303110885X

DOWNLOAD EBOOK

This book introduces and discusses the self-adjoint extension problem for symmetric operators on Hilbert space. It presents the classical von Neumann and Krein–Vishik–Birman extension schemes both in their modern form and from a historical perspective, and provides a detailed analysis of a range of applications beyond the standard pedagogical examples (the latter are indexed in a final appendix for the reader’s convenience). Self-adjointness of operators on Hilbert space representing quantum observables, in particular quantum Hamiltonians, is required to ensure real-valued energy levels, unitary evolution and, more generally, a self-consistent theory. Physical heuristics often produce candidate Hamiltonians that are only symmetric: their extension to suitably larger domains of self-adjointness, when possible, amounts to declaring additional physical states the operator must act on in order to have a consistent physics, and distinct self-adjoint extensions describe different physics. Realising observables self-adjointly is the first fundamental problem of quantum-mechanical modelling. The discussed applications concern models of topical relevance in modern mathematical physics currently receiving new or renewed interest, in particular from the point of view of classifying self-adjoint realisations of certain Hamiltonians and studying their spectral and scattering properties. The analysis also addresses intermediate technical questions such as characterising the corresponding operator closures and adjoints. Applications include hydrogenoid Hamiltonians, Dirac–Coulomb Hamiltonians, models of geometric quantum confinement and transmission on degenerate Riemannian manifolds of Grushin type, and models of few-body quantum particles with zero-range interaction. Graduate students and non-expert readers will benefit from a preliminary mathematical chapter collecting all the necessary pre-requisites on symmetric and self-adjoint operators on Hilbert space (including the spectral theorem), and from a further appendix presenting the emergence from physical principles of the requirement of self-adjointness for observables in quantum mechanics.