An exploration of the basics of signal theory, and of both the time-and frequency-domain analyses of systems. The discrete and continuous-time cases are presented in parallel, at times in a two-column format for ease of comparison. Separate chapters examine applications in signal processing, digital filtering, communication systems, and automatic c.
This is the eBook of the printed book and may not include any media, website access codes, or print supplements that may come packaged with the bound book. For sophomore/junior-level signals and systems courses in Electrical and Computer Engineering departments. Signals, Systems, and Transforms, Fourth Edition is ideal for electrical and computer engineers. The text provides a clear, comprehensive presentation of both the theory and applications in signals, systems, and transforms. It presents the mathematical background of signals and systems, including the Fourier transform, the Fourier series, the Laplace transform, the discrete-time and the discrete Fourier transforms, and the z-transform. The text integrates MATLAB examples into the presentation of signal and system theory and applications.
The fast and easy way to learn signals and systems Get a working knowledge of signal processing and systems--even if you don't have formal training, unlimited time, or a genius IQ. Signals and Systems Demystified offers an effective, illuminating, and entertaining way to learn this essential electrical engineering subject. First, you'll learn methods used to calculate energy and power in signals. Next, you'll study signals in the frequency domain using Fourier analysis. Other topics covered include amplitude, frequency, and phase modulation, spectral analysis, convolution, the Laplace transform, and the z-transform. Packed with hundreds of sample equations and explained solutions, and featuring end-of-chapter quizzes and a final exam, this book will teach you the fundamentals of signals and systems in no time at all. Simple enough for a beginner, but challenging enough for an advanced student, Signals and Systems Demystified is your shortcut to mastering this complex subject. This hands-on, self-teaching text offers: An easy way to understand signal processing and systems Hundreds of worked examples with solutions A quiz at the end of each chapter to reinforce learning and pinpoint weaknesses A final exam at the end of the book No unnecessary technical jargon A time-saving approach to performing better on an exam or at work!
Exploring signals and systems, this work develops continuous-time and discrete-time concepts, highlighting the differences and similarities. Two chapters deal with the Laplace transform and the Z-transform. Basic methods such as filtering, communication an
Signals and Systems is a comprehensive textbook designed for undergraduate students of engineering for a course on signals and systems. Each topic is explained lucidly by introducing the concepts first through abstract mathematical reasoning and illustrations, and then through solved examples-
This book is intended for use in teaching undergraduate courses on continuous-time and/or discrete-time signals and systems in engineering (and related) disciplines. It provides a detailed introduction to continuous-time and discrete-time signals and systems, with a focus on both theory and applications. The mathematics underlying signals and systems is presented, including topics such as: signal properties, elementary signals, system properties, continuous-time and discrete-time linear time-invariant systems, convolution, continuous-time and discrete-time Fourier series, the continuous-time and discrete-time Fourier transforms, frequency spectra, and the bilateral and unilateral Laplace and z transforms. Applications of the theory are also explored, including: filtering, equalization, amplitude modulation, sampling, feedback control systems, circuit analysis, Laplace-domain techniques for solving differential equations, and z-domain techniques for solving difference equations. Other supplemental material is also included, such as: a detailed introduction to MATLAB, a review of complex analysis, an introduction to partial fraction expansions, an exploration of time-domain techniques for solving differential equations, and information on online video-lecture content for material covered in the book. Throughout the book, many worked-through examples are provided. Problem sets are also provided for each major topic covered.
This book provides a comprehensive, modern approach to signals and systems, concentrating on those aspects that are most relevant for applications such as communication systems and signal processing. Emphasis is placed on building the reader's intuition and problem-solving ability, rather than formal theorems and proofs. "The coverage of the book is comprehensive, providing a broad overview, using a whole host of exercises. The wealth of the worked examples and problems complemented by solutions is particularly attractive. The level of mathematics is not too daunting for the good average student and the authors do their utmost to mitigate the difficulties, skilfully using worked examples." Prof. Lajos Hanzo, University of Southampton author of Mobile Radio Communications and Single-and Multi-carrier QAM Check out the companion Website for 'Systool' simulation software using Java applets to animate many of the key examples and exercises from the book.
This book presents a systematic, comprehensive treatment of analog and discrete signal analysis and synthesis and an introduction to analog communication theory. This evolved from my 40 years of teaching at Oklahoma State University (OSU). It is based on three courses, Signal Analysis (a second semester junior level course), Active Filters (a first semester senior level course), and Digital signal processing (a second semester senior level course). I have taught these courses a number of times using this material along with existing texts. The references for the books and journals (over 160 references) are listed in the bibliography section. At the undergraduate level, most signal analysis courses do not require probability theory. Only, a very small portion of this topic is included here. I emphasized the basics in the book with simple mathematics and the soph- tication is minimal. Theorem-proof type of material is not emphasized. The book uses the following model: 1. Learn basics 2. Check the work using bench marks 3. Use software to see if the results are accurate The book provides detailed examples (over 400) with applications. A thr- number system is used consisting of chapter number – section number – example or problem number, thus allowing the student to quickly identify the related material in the appropriate section of the book. The book includes well over 400 homework problems. Problem numbers are identified using the above three-number system.
In the past few years Biomedical Engineering has received a great deal of attention as one of the emerging technologies in the last decade and for years to come, as witnessed by the many books, conferences, and their proceedings. Media attention, due to the applications-oriented advances in Biomedical Engineering, has also increased. Much of the excitement comes from the fact that technology is rapidly changing and new technological adventures become available and feasible every day. For many years the physical sciences contributed to medicine in the form of expertise in radiology and slow but steady contributions to other more diverse fields, such as computers in surgery and diagnosis, neurology, cardiology, vision and visual prosthesis, audition and hearing aids, artificial limbs, biomechanics, and biomaterials. The list goes on. It is therefore hard for a person unfamiliar with a subject to separate the substance from the hype. Many of the applications of Biomedical Engineering are rather complex and difficult to understand even by the not so novice in the field. Much of the hardware and software tools available are either too simplistic to be useful or too complicated to be understood and applied. In addition, the lack of a common language between engineers and computer scientists and their counterparts in the medical profession, sometimes becomes a barrier to progress.