The first comprehensive applied book in years on this rapidly-changing area of telecommunications, here is the only resource capable of bringing you fully up to speed on the latest developments in fiber optic communication systems (FOCS). Designed to help you master the mathematics and statistics needed to create high-performance FOCS, Fiber Optic Communications offers you current, in-depth coverage of: optical amplification and the operational characteristics of optical amplifiers; several types of optical detectors - including a uniquely rigorous treatment of quantum noise, receiver noise, and noise in optical amplifiers; wave-division multiplexing - which greatly increases the data rate capability of optical fibers; optical heterodyne detection (OHD) systems - including system performance and proven methods for dealing with phase noise; pros and cons of OHD receivers versus direct detection receivers - one of the hottest debates in fiber optics; and design and performance of a proposed OHD system that features much greater detector sensitivity than present systems.
Introduction to Fiber-Optic Communications provides students with the most up-to-date, comprehensive coverage of modern optical fiber communications and applications, striking a fine balance between theory and practice that avoids excessive mathematics and derivations. Unlike other textbooks currently available, this book covers all of the important recent technologies and developments in the field, including electro-optic modulators, coherent optical systems, and silicon integrated photonic circuits. Filled with practical, relevant worked examples and exercise problems, the book presents complete coverage of the topics that optical and communications engineering students need to be successful. From principles of optical and optoelectronic components, to optical transmission system design, and from conventional optical fiber links, to more useful optical communication systems with advanced modulation formats and high-speed DSP, this book covers the necessities on the topic, even including today's important application areas of passive optical networks, datacenters and optical interconnections.
Fiber-optic communication systems have advanced dramatically over the last four decades, since the era of copper cables, resulting in low-cost and high-bandwidth transmission. Fiber optics is now the backbone of the internet and long-distance telecommunication. Without it we would not enjoy the benefits of high-speed internet, or low-rate international telephone calls. This book introduces the basic concepts of fiber-optic communication in a pedagogical way. The important mathematical results are derived by first principles rather than citing research articles. In addition, physical interpretations and real-world analogies are provided to help students grasp the fundamental concepts. Key Features: Lucid explanation of key topics such as fibers, lasers, and photodetectors. Includes recent developments such as coherent communication and digital signal processing. Comprehensive treatment of fiber nonlinear transmission. Worked examples, exercises, and answers. Accompanying website with PowerPoint slides and numerical experiments in MATLAB. Intended primarily for senior undergraduates and graduates studying fiber-optic communications, the book is also suitable as a professional resource for researchers working in the field of fiber-optic communications.
Beginning with an overview of historical development, the electromagnetic spectrum, and optical power basics, this book offers an in-depth discussion of optic receivers, optical transmitters and amplifiers. The text discusses attenuation, transmission losses, optical sources such as semiconductor light emitting diodes, and lasers, providing several dispersion-management schemes that restore the amplified signal to its original state. Topics are discussed in a structured manner, with definitions, explanations, examples, illustrations, and informative facts. Extensive pedagogical features, such as numerical problems, review questions, multiple choice questions, and student-focussed learning objectives, are also provided. Mathematical derivations and geometrical representations are included where necessary. This text will be useful for undergraduate and graduate students of electronics, communication engineering, and optical fiber communications.
A useful source of information to anyone who works with fiber optics, this state-of-the-art guide covers the newest technological innovations in fibers, systems and networks, and provides a solid foundation in the basics with lots of examples, practical applications, graphical presentations, and solutions to problems that simulate those found in the workplace. Devotes complete chapters to optical fibers, singlemode fibers, light sources and transmitters, photodetectors and receivers, and more. Provides real data and specification sheets to help users hone their ability to read data sheets and integrate concepts - a critical skill for practicing engineers. Offers a "two-level discussion" in each chapter: a "Basics" section introduces the main ideas and principles involved in the devices covered, and "A Deeper Look" section offers a more theoretical and detailed discussion of the same material. Describes the test, measurement, and troubleshooting of fiber optics communications systems based on existing standards and commercially available equipment. Integrates many pictures of commercially available devices and equipment throughout. For professionals in the electronic technology industry.
This book highlights the fundamental principles of optical fiber technology required for understanding modern high-capacity lightwave telecom networks. Such networks have become an indispensable part of society with applications ranging from simple web browsing to critical healthcare diagnosis and cloud computing. Since users expect these services to always be available, careful engineering is required in all technologies ranging from component development to network operations. To achieve this understanding, this book first presents a comprehensive treatment of various optical fiber structures and diverse photonic components used in optical fiber networks. Following this discussion are the fundamental design principles of digital and analog optical fiber transmission links. The concluding chapters present the architectures and performance characteristics of optical networks.
An expert guide to the new and emerging field of broadband circuits for optical fiber communication This exciting publication makes it easy for readers to enter into and deepen their knowledge of the new and emerging field of broadband circuits for optical fiber communication. The author's selection and organization of material have been developed, tested, and refined from his many industry courses and seminars. Five types of broadband circuits are discussed in detail: * Transimpedance amplifiers * Limiting amplifiers * Automatic gain control (AGC) amplifiers * Lasers drivers * Modulator drivers Essential background on optical fiber, photodetectors, lasers, modulators, and receiver theory is presented to help readers understand the system environment in which these broadband circuits operate. For each circuit type, the main specifications and their impact on system performance are explained and illustrated with numerical values. Next, the circuit concepts are discussed and illustrated with practical implementations. A broad range of circuits in MESFET, HFET, BJT, HBT, BiCMOS, and CMOS technologies is covered. Emphasis is on circuits for digital, continuous-mode transmission in the 2.5 to 40 Gb/s range, typically used in SONET, SDH, and Gigabit Ethernet applications. Burst-mode circuits for passive optical networks (PON) and analog circuits for hybrid fiber-coax (HFC) cable-TV applications also are discussed. Learning aids are provided throughout the text to help readers grasp and apply difficult concepts and techniques, including: * Chapter summaries that highlight the key points * Problem-and-answer sections to help readers apply their new knowledge * Research directions that point to exciting new technological breakthroughs on the horizon * Product examples that show the performance of actual broadband circuits * Appendices that cover eye diagrams, differential circuits, S parameters, transistors, and technologies * A bibliography that leads readers to more complete and in-depth treatment of specialized topics This is a superior learning tool for upper-level undergraduates and graduate-level students in circuit design and optical fiber communication. Unlike other texts that concentrate on analog circuits in general or mostly on optics, this text provides balanced coverage of electronic, optic, and system issues. Professionals in the fiber optic industry will find it an excellent reference, incorporating the latest technology and discoveries in the industry.