Sea Ice

Sea Ice

Author: David N. Thomas

Publisher: John Wiley & Sons

Published: 2017-03-06

Total Pages: 666

ISBN-13: 1118778383

DOWNLOAD EBOOK

Over the past 20 years the study of the frozen Arctic and Southern Oceans and sub-arctic seas has progressed at a remarkable pace. This third edition of Sea Ice gives insight into the very latest understanding of the how sea ice is formed, how we measure (and model) its extent, the biology that lives within and associated with sea ice and the effect of climate change on its distribution. How sea ice influences the oceanography of underlying waters and the influences that sea ice has on humans living in Arctic regions are also discussed. Featuring twelve new chapters, this edition follows two previous editions (2001 and 2010), and the need for this latest update exhibits just how rapidly the science of sea ice is developing. The 27 chapters are written by a team of more than 50 of the worlds’ leading experts in their fields. These combine to make the book the most comprehensive introduction to the physics, chemistry, biology and geology of sea ice that there is. This third edition of Sea Ice will be a key resource for all policy makers, researchers and students who work with the frozen oceans and seas.


The Mechanical Properties of Sea Ice

The Mechanical Properties of Sea Ice

Author: W. F. Weeks

Publisher:

Published: 1967

Total Pages: 100

ISBN-13:

DOWNLOAD EBOOK

The review discusses the state of thinking of each of the main national groups investigating sea ice and gives an overall appraisal of the field as a whole. Emphasis is placed on (1) the physical basis for interpreting sea ice strength (phase relations, air volume, and structural considerations), (2) theoretical considerations (strength models, air bubbles and salt reinforcement, and interrelations between growth conditions and strength), (3) experimental results (tensile, flexural, shear, and compressive strength, elastic modulus, shear modulus and Poisson's ratio, time dependent effects, and creep), and (4) plate characteristics. The paper includes a review of problems in sea ice investigations, relates the chemical, crystallographic, mechanical, and physical aspects involved, and concludes by showing how to utilize this knowledge to solve practical problems. (Author).


Field Techniques for Sea-Ice Research

Field Techniques for Sea-Ice Research

Author: Hajo Eicken

Publisher: University of Alaska Press

Published: 2010-03-15

Total Pages: 590

ISBN-13: 1602231079

DOWNLOAD EBOOK

As much as one-tenth of the world’s oceans are covered with sea ice, or frozen ocean water, at some point during the annual cycle. Sea ice thus plays an important, often defining, role in the natural environment and the global climate system. This book is a global look at the changes in sea ice and the tools and techniques used to measure and record those changes. The first comprehensive research done on sea-ice field techniques, this volume will be indispensable for the study of northern sea ice and a must-have for scientists in the field of climate change research.


The Drift of Sea Ice

The Drift of Sea Ice

Author: Matti Leppäranta

Publisher: Springer Science & Business Media

Published: 2011-03-22

Total Pages: 370

ISBN-13: 3642046835

DOWNLOAD EBOOK

The Second Edition of The Drift of Sea Ice presents the fundamental laws of sea ice drift which come from the material properties of sea ice and the basic laws of mechanics. The resulting system of equations is analysed for the general properties of sea ice drift, the free drift model and analytical models for ice drift in the presence of internal friction, and the construction of numerical ice drift models is detailed. This second edition of a much lauded work, unique on this topic in the English language, has been revised, updated and expanded with much new information and outlines recent results, in particular in relation to the climate problem, mathematical modelling and ice engineering applications. The current book presents the theory, observations, mathematical modelling techniques, and applications of sea ice drift science. The theory is presented from the beginning on a graduate student level, so that students and researchers coming from other fields such as physical oceanography, meteorology, physics, engineering, environmental sciences or geography can use the book as a source book or self-study material. First the drift ice material is presented ending with the concept of ‘ice state’ – the relevant properties in sea ice dynamics. Ice kinematics observations are widely presented with the mathematical analysis methods, and thereafter come drift ice rheology – to close the triangle material – kinematics – stress. The momentum equation of sea ice is derived in detail and its general properties are carefully analysed. Then follow two chapters on analytical models: free drift and drift in the presence of internal friction: These are very important tools in understanding the dynamical behaviour of sea ice. The last topical chapter is numerical models, which are the modern tool to solve ice dynamics problem in short term and long term problems. The closing chapter summarises sea ice dynamics applications and the need of sea ice dynamic knowledge and gives some final remarks on the future of this branch of science.


Drift, Deformation, and Fracture of Sea Ice

Drift, Deformation, and Fracture of Sea Ice

Author: Jerome Weiss

Publisher: Springer Science & Business Media

Published: 2013-03-14

Total Pages: 95

ISBN-13: 940076202X

DOWNLOAD EBOOK

Sea ice is a major component of polar environments, especially in the Arctic where it covers the entire Arctic Ocean throughout most of the year. However, in the context of climate change, the Arctic sea ice cover has been declining significantly over the last decades, either in terms of its concentration or thickness. The sea ice cover evolution and climate change are strongly coupled through the albedo positive feedback, thus possibly explaining the Arctic amplification of climate warming. In addition to thermodynamics, sea ice kinematics (drift, deformation) appears as an essential factor in the evolution of the ice cover through a reduction of the average ice age (and consequently of the cover's thickness), or ice export out of the Arctic. This is a first motivation for a better understanding of the kinematical and mechanical processes of sea ice. A more upstream, theoretical motivation is a better understanding of the brittle deformation of geophysical objects across a wide range of scales. Indeed, owing to its very strong kinematics, compared e.g. to the Earth’s crust, an unrivaled kinematical data set is available for sea ice from in situ (e.g. drifting buoys) or satellite observations. Here, we review the recent advances in the understanding of sea ice drift, deformation and fracturing obtained from these data. We focus particularly on the scaling properties in time and scale that characterize these processes, and we emphasize the analogies that can be drawn from the deformation of the Earth’s crust. These scaling properties, which are the signature of long-range elastic interactions within the cover, constrain future developments in the modeling of sea ice mechanics. We also show that kinematical and rheological variables such as average velocity, average strain-rate or strength have significantly changed over the last decades, accompanying and actually accelerating the Arctic sea ice decline.


The Freshwater Budget of the Arctic Ocean

The Freshwater Budget of the Arctic Ocean

Author: E. Peter Jones

Publisher: Springer Science & Business Media

Published: 2000

Total Pages: 656

ISBN-13: 9780792364399

DOWNLOAD EBOOK

Two dozen studies from an April-May 1998 conference in Tallinn, Estonia that were carefully commissioned to provide a snapshot of the state of knowledge about the flow of fresh water from Arctic Ocean as of that weekend, one paper even being written afterward to cover for a presentation that was not ready for publication. Meteorologists, hydrologists, oceanographers, and sea-ice specialists explore such aspects as oceanic freshwater fluxes in the climate system, atmospheric components of the Arctic Ocean freshwater balance and their interannual variability, atmospheric components of the hydrologic budget assessed from Rawinsonde data, moisture transport to the drainage basins relating to significant precipitation events and cyclogenesis, the dynamics of river water inflow, a positive-negative estuarine couple, tracer studies, exchanges of freshwater through the shallow straits of the North American Arctic, modeling the variability of exchanges between the Arctic Ocean and the Nordic seas, and the cycle of fresh water freezing and melting. Annotation copyrighted by Book News, Inc., Portland, OR


Antarctic Sea Ice Variability in the Southern Ocean-Climate System

Antarctic Sea Ice Variability in the Southern Ocean-Climate System

Author: National Academies of Sciences, Engineering, and Medicine

Publisher: National Academies Press

Published: 2017-04-24

Total Pages: 83

ISBN-13: 0309456002

DOWNLOAD EBOOK

The sea ice surrounding Antarctica has increased in extent and concentration from the late 1970s, when satellite-based measurements began, until 2015. Although this increasing trend is modest, it is surprising given the overall warming of the global climate and the region. Indeed, climate models, which incorporate our best understanding of the processes affecting the region, generally simulate a decrease in sea ice. Moreover, sea ice in the Arctic has exhibited pronounced declines over the same period, consistent with global climate model simulations. For these reasons, the behavior of Antarctic sea ice has presented a conundrum for global climate change science. The National Academies of Sciences, Engineering, and Medicine held a workshop in January 2016, to bring together scientists with different sets of expertise and perspectives to further explore potential mechanisms driving the evolution of recent Antarctic sea ice variability and to discuss ways to advance understanding of Antarctic sea ice and its relationship to the broader ocean-climate system. This publication summarizes the presentations and discussions from the workshop.


Arctic Sea Ice Decline

Arctic Sea Ice Decline

Author: Eric T. DeWeaver

Publisher: John Wiley & Sons

Published: 2013-05-28

Total Pages: 431

ISBN-13: 1118671589

DOWNLOAD EBOOK

Published by the American Geophysical Union as part of the Geophysical Monograph Series, Volume 180. This volume addresses the rapid decline of Arctic sea ice, placing recent sea ice decline in the context of past observations, climate model simulations and projections, and simple models of the climate sensitivity of sea ice. Highlights of the work presented here include An appraisal of the role played by wind forcing in driving the decline; A reconstruction of Arctic sea ice conditions prior to human observations, based on proxy data from sediments; A modeling approach for assessing the impact of sea ice decline on polar bears, used as input to the U.S. Fish and Wildlife Service's decision to list the polar bear as a threatened species under the Endangered Species Act; Contrasting studies on the existence of a "tipping point," beyond which Arctic sea ice decline will become (or has already become) irreversible, including an examination of the role of the small ice cap instability in global warming simulations; A significant summertime atmospheric response to sea ice reduction in an atmospheric general circulation model, suggesting a positive feedback and the potential for short-term climate prediction. The book will be of interest to researchers attempting to understand the recent behavior of Arctic sea ice, model projections of future sea ice loss, and the consequences of sea ice loss for the natural and human systems of the Arctic.


The Geophysics of Sea Ice

The Geophysics of Sea Ice

Author: Norbert Untersteiner

Publisher: Springer

Published: 2013-12-06

Total Pages: 0

ISBN-13: 9781489953544

DOWNLOAD EBOOK

Based on the proceedings of the NATO Advanced Study Institute on Air-Sea-Ice Interaction held September 28-October 10, 1981 in Acquafredda di maratea, Italy. Intent is to present the topic of sea ice in the broad and interdisciplinary context of atmospheric and oceanographic science.