This publication focuses on the medical management of individuals involved in radiation emergencies, especially those who have been exposed to high doses of ionizing radiation. Its primary objective is to provide practical information, to be used for treatment decisions by medical personnel during a radiation emergency. It also addresses general and specific measures for the medical management of individuals who have been internally contaminated with radionuclides. This publication is complementary to other publications developed by the IAEA in the medical area of radiation emergencies.
Global energy demands are driving a potential expansion in the use of nuclear energy worldwide. It is estimated that the global nuclear power capacity could double by 2030. This could result in dissemination of sensitive nuclear technologies that present obvious risks of proliferation. Certain international institutional mechanisms for controlling access to sensitive materials, facilities and technologies are needed for dealing with this problem. Over the past few years, 12 proposals have been put forward by states, nuclear industry and international organizations, aimed at checking the spread of uranium enrichment and spent fuel reprocessing technologies. This book presents an overview and analysis of these proposals, including an evaluation of the projected international mechanisms.
In the late 1980s, the National Cancer Institute initiated an investigation of cancer risks in populations near 52 commercial nuclear power plants and 10 Department of Energy nuclear facilities (including research and nuclear weapons production facilities and one reprocessing plant) in the United States. The results of the NCI investigation were used a primary resource for communicating with the public about the cancer risks near the nuclear facilities. However, this study is now over 20 years old. The U.S. Nuclear Regulatory Commission requested that the National Academy of Sciences provide an updated assessment of cancer risks in populations near USNRC-licensed nuclear facilities that utilize or process uranium for the production of electricity. Analysis of Cancer Risks in Populations near Nuclear Facilities: Phase 1 focuses on identifying scientifically sound approaches for carrying out an assessment of cancer risks associated with living near a nuclear facility, judgments about the strengths and weaknesses of various statistical power, ability to assess potential confounding factors, possible biases, and required effort. The results from this Phase 1 study will be used to inform the design of cancer risk assessment, which will be carried out in Phase 2. This report is beneficial for the general public, communities near nuclear facilities, stakeholders, healthcare providers, policy makers, state and local officials, community leaders, and the media.
On the basis of the principles included in the Fundamental Safety Principles, IAEA Safety Standards Series No. SF-1, this Safety Requirements publication establishes requirements applicable to the design of nuclear power plants. It covers the design phase and provides input for the safe operation of the power plant. It elaborates on the safety objective, safety principles and concepts that provide the basis for deriving the safety requirements that must be met for the design of a nuclear power plant. Contents: 1. Introduction; 2. Applying the safety principles and concepts; 3. Management of safety in design; 4. Principal technical requirements; 5. General plant design; 6. Design of specific plant systems.
This Safety Guide provides guidance on the predisposal management of all types of radioactive waste (including spent nuclear fuel declared as waste and high level waste) generated at nuclear fuel cycle facilities. These waste management facilities may be located within larger facilities or may be separate, dedicated waste management facilities (including centralized waste management facilities). The Safety Guide covers all stages in the lifetime of these facilities, including their siting, design, construction, commissioning, operation, and shutdown and decommissioning. It covers all steps carried out in the management of radioactive waste following its generation up to (but not including) disposal, including its processing (pretreatment, treatment and conditioning). Radioactive waste generated both during normal operation and in accident conditions is considered.
Nuclear material accounting and control (NMAC) works in a complementary fashion with the international safeguards programme and physical protection systems to help prevent, deter or detect the unauthorized acquisition and use of nuclear materials. These three methodologies are employed by Member States to defend against external threats, internal threats and both State actors and non-State actors. This publication offers guidance for implementing NMAC measures for nuclear security at the nuclear facility level. It focuses on measures to mitigate the risk posed by insider threats and describes elements of a programme that can be implemented at a nuclear facility in coordination with the physical protection system for the purpose of deterring and detecting unauthorized removal of nuclear material.
The ageing of structures, systems and components is one of the major challenges faced by nuclear fuel cycle facilities worldwide. This publication is intended to provide information on methods, approaches, practices and strategies for ageing management of nuclear fuel cycle facilities. It provides practical information on the establishment of effective ageing management programmes for nuclear fuel cycle facilities in the operational stage and on ageing management considerations in different stages in the lifetime of a nuclear fuel cycle facility. It also addresses the interface of ageing management with other technical areas and programmes, including maintenance, periodic testing and inspection, equipment qualification and configuration management. Best practice examples on how Member States are addressing ageing issues in nuclear fuel cycle facilities are also provided in this publication.
This publication gives practical information and examples of safety analysis principles and methods as well as the contents of licensing documentation needed to support application of IAEA safety standards to nuclear fuel cycle facilities. A systematic methodology is presented, covering the establishment of acceptance criteria, hazard evaluation, identification of postulated initiating events, analysis of accident sequences and consequences. Information is also provided on application of the results of the safety analysis in the design and operational phases, and on appropriate management system processes. The publication applies to all lifetime stages of relevant facilities and for modifications and upgrades. The information presented may be used for periodic safety reviews and consideration of extended lifetime of facilities. With respect to licensing documentation, the publication provides indicative contents and format of the safety analysis report as a higher level document that incorporates the information required at various steps in the licensing and relicensing process.